Table 1. Evaluation of prostate cancer aggressiveness prediction using the proposed methods and comparison methods. Means and standard deviations are presented. The highest values are denoted in bold.

Image configurations Self-supervised learning set Accuracy(%) Sensitivity(%) Specificity(%) PPV(%) NPV(%) AUC
T2wMR ImageNet+ProstateX 65.00±8.47 58.93±12.40 70.00±15.92 64.29±14.89 67.63±6.78 0.68±0.11
DWI 60.64±9.57 52.86±13.66 67.06±19.55 61.74±18.75 63.00±7.67 0.60±0.10
ADCmap 62.26±9.98 44.64±25.16 76.76±17.51 61.63±18.04 64.53±10.27 0.55±0.11
Image fusion 62.42±7.57 46.43±22.9 75.59±15.32 62.52±12.6 64.76±10.30 0.59±0.08
Feature fusion 63.39±4.24 56.07±8.92 69.41±8.79 60.84±7.09 65.92±3.97 0.63±0.05
Prediction fusion (AV) 67.26±5.21 49.64±9.74 81.77±10.17 70.96±10.99 66.47±3.97 0.66±0.05
Prediction fusion (MV) 69.68±6.17 54.64±10.66 82.06±8.93 72.45±10.42 68.93±5.27 0.68±0.06
T2wMR ImageNet+ProstateX+SNUBPCa 65.32±6.46 64.64±18.86 65.88±13.46 61.53±7.67 71.51±10.58 0.67±0.10
DWI 61.94±5.70 54.64±21.30 67.94±15.41 59.26±9.66 66.17±7.46 0.62±0.08
ADCmap 63.55±3.96 51.07±8.43 73.82±8.02 62.3±6.18 64.81±3.66 0.61±0.04
Image fusion 62.58±6.84 52.14±18.07 71.18±18.75 62.85±11.34 65.15±6.97 0.63±0.06
Feature fusion 63.71±4.70 57.14±15.25 69.12±13.53 64.24±6.70 67.06±5.50 0.64±0.06
Prediction fusion (AV) 67.90±5.66 56.07±7.72 77.65±10.30 68.51±9.78 68.22±3.85 0.67±0.05
Prediction fusion (MV) 71.29±5.63 58.93±7.39 81.47±8.88 73.29±9.09 70.70±4.36 0.70±0.05