Table 1. Rank-1 recognition rate (%) performance comparison between the baseline FNM and the proposed Multi-Image FNM across different numbers of input images (n). The proposed Multi-Image FNM was trained using two input images.

number of input images FNM [1] Multi-Image FNM (maxpolling) Multi-Image FNM (avgpooling)
n=1 87.39 87.39 87.39
n=2 - 94.47 93.91
n=3 - 95.63 95.81
n=4 - 95.82 96.61
n=5 - 95.89 97.15
n=6 - 95.94 97.28
n=7 - 96.01 97.43
n=8 - 95.94 97.63