Table 1 Performance evaluation of meniscus segmentation according to labeled data and unlabeled data ratios in supervised and semi-supervised learning network
Methods | Network | Ratio(%) | Metrics(%) |
Labeled | Unlabeled | Balanced accuracy | F1-score | Recall | Precision |
Supervised learning | 2D nnU-Net[18] | 22 | - | 94.42±2.0 | 89.40±1.6 | 89.16±4.2 | 90.09±4.8 |
83 | - | 96.07±1.7 | 90.95±1.9 | 92.48±3.7 | 89.86±5.2 |
Semi supervised learning | MT[15] | 22 | 63 | 94.92±2.0 | 89.90±1.9 | 90.17±4.2 | 90.06±5.1 |
MT+AMB | 94.92±1.6 | 83.27±3.9 | 90.75±3.4 | 77.47±7.6 |
MT+AMB+ws | 95.09±1.7 | 89.18±1.9 | 90.59±3.7 | 88.20±5.2 |
MT+AMB+wt | 95.56±1.8 | 89.72±1.8 | 91.52±3.8 | 88.39±5.1 |
MT+AMB+ws+wt | 96.42±1.6 | 90.02±2.1 | 93.28±3.5 | 87.39±5.6 |
MT+AMB+ws+wt | 22 | 226 | 96.87±1.6 | 88.81±2.6 | 94.32±3.4 | 84.35±6.3 |
MT+AMB+ws+wt | 83 | 165 | 97.02±1.5 | 91.11±2.3 | 94.45±3.2 | 88.39±5.8 |