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요약

본연구에서는 360◦ 파노라마의깊이영상을추정하는딥러닝구조를제안한다.이전연구들에서는딥러닝네트워크를학습
시키기위해렌더링된 360◦파노라마데이터셋을사용했다.하지만,렌더링된파노라마데이터셋은실제로촬영된파노라마
데이터 셋과 다르기 때문에, 이전 연구들의 네트워크는 실제로 촬영된 파노라마에 대해선 깊이 영상을 정확히 추정할 수가
없었다. 이 문제를 해결하기 위해 본 연구에서는 도메인 적응을 사용해서 렌더링된 파노라마와 실제로 촬영된 파노라마가
공유하는특징들을네트워크가학습하게했다.실험을통해우리의방식이렌더링된파노라마에대해선우수한성능을유지
하면서실제로촬영된파노라마에대해서도정확한깊이영상을추정하는것을볼수있다.

Abstract

In this paper, we propose a deep learning framework for predicting a depth map of a 360◦ panorama image. Previous works
use synthetic 360◦ panorama datasets to train networks due to the lack of realistic datasets. However, the synthetic nature of the
datasets induces features extracted by the networks to differ from those of real 360◦ panorama images, which inevitably leads
previous methods to fail in depth prediction of real 360◦ panorama images. To address this gap, we use domain adaptation to
learn features shared by real and synthetic panorama images. Experimental results show that our approach can greatly improve
the accuracy of depth estimation on real panorama images while achieving the state-of-the-art performance on synthetic images.

키워드: 깊이추정,딥러닝,도메인적응,구형파노라마,단일이미지
Keywords: depth estimation, deep learning, domain adaptation, spherical panorama, single image

1 Introduction

Estimating depth from a single image has been extensively studied
due to its applicability to higher-level visual processing, such as
generating 3D geometry [1], 3D rendering with object compositing
[2], creating panoramas in other viewpoints [3], and scene under-
standing [4]. However, the majority of efforts on depth prediction
has been focused on normal field-of-view (FoV) images, and depth
estimation from 360◦ panorama images has been paid less atten-
tion despite the increasing popularity of 360◦ cameras.

For depth estimation from 360◦ panorama images, traditional
approaches [5, 3] mostly use more than one panorama images, and
rely on structure-from-motion (SfM) [6] and bundle adjustment
with the plane sweeping algorithm [7]. With the recent advent of
deep learning, single 360◦ panorama image-based depth estimation
techniques have been introduced. Zioulis et al. [8] propose a super-
vised learning-based approach, in which they implement rectangu-
lar convolution filters for the robustness to geometric distortions in
panorama images. Eder et al. [9] use two supervised decoders, one
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(a) Synthetic panorama (b) Real panorama

Figure 1: Visual difference of synthetic and real panorama images.

of which estimates a depth map, while the other predicts normal
and boundary maps. Eder et al. [10] introduce deformed convolu-
tion kernels that dynamically change their shapes depending on the
locations to effectively handle geometric distortions in panorama
images. Zioulis et al. [11] introduce a self-supervised method to
deal with error in training data. Thanks to the capability of deep
learning, these methods can produce a plausible depth map even
from a single image.

However, previous deep learning-based methods [8, 9, 10, 11]
heavily rely on synthetic datasets as acquisition of real panorama
images and depth maps is difficult. The most popular datasets for
panorama image depth estimation include the SUMO [12] and
360D [8] datasets. The SUMO dataset consists of panorama im-
ages rendered from computer-generated 3D models, and their cor-
responding ground truth depth maps. The 360D dataset also con-
sists of panorama images rendered from 3D models, and their cor-
responding depth maps. The 3D models used in the 360D datasets
are either computer-generated or obtained by 3D scanning of real
indoor environments.

Unfortunately, the synthetic nature of both datasets has funda-
mental limitations. While computer-generated 3D models may pro-
vide highly accurate depth information, panorama images rendered
from them are often unrealistic and have different characteristics
from real panorama images. On the other hand, 3D scanning may
provide more realistic-looking panorama images, but suffer from
3D reconstruction errors, which lead to artifacts in panorama im-
ages and depth maps. Such unnatural characteristics of previous
datasets introduce domain difference [13] between synthesized and
real panorama images, which hinders the performance of learning-
based depth estimation approaches. Fig. 1 shows the visual differ-
ence of synthetic and real panorama images.

In this paper, we propose a novel deep learning-based approach
that estimates a depth map from a single 360◦ panorama image. In
our approach, we use the 360D dataset [8] to train a convolutional

neural network to predict a depth map from a single panorama im-
age. However, to address the domain difference between synthe-
sized and real images, we introduce domain adaptation into our
framework. Specifically, for training the network, we utilize an ad-
ditional dataset, SUN360 [14], which provides real 360◦ panorama
images without ground truth depth maps. We also adopt an adver-
sarial loss to learn features shared by synthetic and real panorama
images so that the network can predict accurate depth maps from
real panorama images even if it is trained on synthetic datasets.
Additionally, we introduce a surface normal loss to suppress noise
in predicted depth maps. Experimental results show that our ap-
proach outperforms previous approaches both on synthetic and real
panorama images.

2 Our Approach

In this section, we describe the network architecture of our frame-
work for depth map estimation from a single 360◦ panorama im-
age, and how to train the network addressing the domain difference
between synthetic and real data.

Our framework is built on top of Zioulis et al.’s framework [8],
which is the state-of-the-art approach to depth estimation from a
single panorama image. Fig. 2 shows our network architecture.
Specifically, for our depth estimation network, we adopt the Rect-
Net architecture [8], which is an encoder-decoder architecture.
The network takes a single 360◦ panorama image obtained with
equirectangular projection as input, and predicts its depth map. The
network uses horizontally wide rectangular convolution filters of
various sizes to deal with distortions of equirectangular projection.
It also adopts dilated convolution to increase the size of receptive
fields.

To train the depth estimation network, we utilize two different
datasets: 360D [8] and SUN360 [14], each of which serves learn-
ing accurate depth estimation and domain adaptation, respectively.
The 360D dataset provides 34,679 pairs of a synthetic panorama
image and its ground truth depth map for training, and 1,298 pairs
for testing. The SUN360 dataset provides real panorama images
collected from the Internet without ground truth depth maps. The
SUN360 panorama dataset is separated into two sets: indoor and
outdoor. We randomly separated the indoor panorama images of
SUN360 dataset into a training set of 10,598 images and a test set
of 1,179 images.

To learn depth estimation, we minimize a loss function over the
training set sampled from the 360D dataset, which is defined as:

Ldata = βdepthLdepth + βsmoothLsmooth + βnormalLnormal (1)
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(a) Synthetic panorama (b) Real panorama

Figure 1: Visual difference of synthetic and real panorama images.
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ages and depth maps. Such unnatural characteristics of previous
datasets introduce domain difference [13] between synthesized and
real panorama images, which hinders the performance of learning-
based depth estimation approaches. Fig. 1 shows the visual differ-
ence of synthetic and real panorama images.
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that estimates a depth map from a single 360◦ panorama image. In
our approach, we use the 360D dataset [8] to train a convolutional

neural network to predict a depth map from a single panorama im-
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ditional dataset, SUN360 [14], which provides real 360◦ panorama
images without ground truth depth maps. We also adopt an adver-
sarial loss to learn features shared by synthetic and real panorama
images so that the network can predict accurate depth maps from
real panorama images even if it is trained on synthetic datasets.
Additionally, we introduce a surface normal loss to suppress noise
in predicted depth maps. Experimental results show that our ap-
proach outperforms previous approaches both on synthetic and real
panorama images.

2 Our Approach

In this section, we describe the network architecture of our frame-
work for depth map estimation from a single 360◦ panorama im-
age, and how to train the network addressing the domain difference
between synthetic and real data.

Our framework is built on top of Zioulis et al.’s framework [8],
which is the state-of-the-art approach to depth estimation from a
single panorama image. Fig. 2 shows our network architecture.
Specifically, for our depth estimation network, we adopt the Rect-
Net architecture [8], which is an encoder-decoder architecture.
The network takes a single 360◦ panorama image obtained with
equirectangular projection as input, and predicts its depth map. The
network uses horizontally wide rectangular convolution filters of
various sizes to deal with distortions of equirectangular projection.
It also adopts dilated convolution to increase the size of receptive
fields.

To train the depth estimation network, we utilize two different
datasets: 360D [8] and SUN360 [14], each of which serves learn-
ing accurate depth estimation and domain adaptation, respectively.
The 360D dataset provides 34,679 pairs of a synthetic panorama
image and its ground truth depth map for training, and 1,298 pairs
for testing. The SUN360 dataset provides real panorama images
collected from the Internet without ground truth depth maps. The
SUN360 panorama dataset is separated into two sets: indoor and
outdoor. We randomly separated the indoor panorama images of
SUN360 dataset into a training set of 10,598 images and a test set
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To learn depth estimation, we minimize a loss function over the
training set sampled from the 360D dataset, which is defined as:

Ldata = βdepthLdepth + βsmoothLsmooth + βnormalLnormal (1)
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where Ldepth, Lsmooth, and Lnormal are data fidelity loss, smooth-
ness loss, and surface normal loss, respectively. βdepth, βsmooth, and
βnormal are their weights. Ldepth makes it possible to learn depth es-
timation, while Lsmooth encourages the depth estimation network to
predict smooth depth maps. Following Zioulis et al. [8], we define
Ldepth and Lsmooth as:

Ldepth = E[‖M(DGT −G(XS))‖2] (2)

Lsmooth = E[‖MeM∇G(XS)‖2] (3)

where XS and DGT are a synthetic panorama image and its ground
truth depth map, respectively. G indicates the depth estimation net-
work, and G(XS) is a depth map predicted from XS . M is a binary
mask of valid pixels in XS , which is also provided by the 360D
dataset. Me is a binary mask to exclude pixels belonging to edges
in DGT as they often suffer from large errors caused by 3D scan-
ning. The inclusion of this mask Me is our own modification that
was not a part of the original Lsmooth proposed by [8]. We refer the
readers to our supplementary material for the construction of Me.

Without Lsmooth, the network can still learn to predict accurate
depth maps in terms of mean-squared-error (MSE), but the pre-
diction results may suffer from high frequency noise, i.e., noisy
surface normals. Lsmooth can help avoid such noise as shown in [8],
but it may harm the accuracy as it simply suppresses depth map
gradients as will be shown in Sec. 3. To resolve this, we propose
a novel loss function Lnormal that encourages the surface normals
of a predicted depth map to be similar to those of the ground truth

depth map so that the predicted depth map has clean and accurate
surface normals with less noise. Mathematically, we define Lnormal

as:
Lnormal = E[‖MeM(N(DGT )−N(G(XS)))‖2] (4)

where N is an operator that computes the surface normal map.

Training the depth estimation network using only Eq. (1) causes
over-fitting to synthetic panorama images and performance degra-
dation on real images due to the domain gap. To resolve this, we
employ adversarial loss functions Ladv and LD for domain adapta-
tion, which are defined as:

Ladv = E [log(D(G(XR)))] (5)

LD = E[log(1−D(G(XR)))] + E[log(D(G(XS)))] (6)

where XR is a real panorama image. D is a discriminator network
that takes a depth map produced by G and discriminates whether
the depth map has been estimated from a synthetic panorama im-
age or not. With Eq. (5), to deceive D for real images, G should
produce depth maps with similar characteristics to the depth maps
from synthetic images. On the other hand, Eq. (6) trains D to
more accurately discriminate depth maps from real and synthetic
panorama images. For the discriminator network D, we employ the
same architecture as the encoder part of G, but with an additional
fully connected layer at the end for binary classification.

Our total loss for training the depth estimation network G is then
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(a) Input panorama image (b) baseline [8]

(c) baseline + Lnormal (d) baseline + Lnormal + Ladv

Figure 3: Ablation study on a real panorama image from the
SUN360 dataset [14].

defined as:
LG = Ldata + αLadv (7)

As constrained by both Eq. (1) and Eq. (5), G can preserve the high
performance on the synthetic panorama images, while it can also
produce similar quality results for real images. Consequently, our
domain adaptation enables G to produce high-quality depth maps
for any types of input images.

3 Results

We use Adam optimizer [20] to train the depth estimation and
discriminator networks with a learning rate of 10−4. We set
[α, βdepth, βsmooth, βnormal, γ] = [10−3, 1, 0.2, 0.4, 10−4], where γ is
the weight for LD in Eq. (6). We first train the depth estimation net-
work with only Ldata for 65,000 iterations with batch size 10. Then
we train the pretrained depth estimation network and discriminator
network with LG and LD for 21,000 iterations with batch size 5.

We conduct an ablation study to verify the effect of each com-
ponent of our framework. In our ablation study, we examine three
variants of our model to verify the effect of the surface normal
loss and the adversarial loss. The first model is a baseline model
trained with only Ldepth and Lsmooth, which is the same model pro-
posed by Zioulis et al. [8]. The second model is trained with Ldepth,
Lsmooth and Lnormal. Finally, the third model is trained with our final
loss function in Eq. (7) with domain adaptation. Then, we qualita-
tively compare the results of the models on a real panorama image
as real panorama images have no ground truth depth maps. Fig.
3 shows resulting depth maps of the three variants. In each depth
map, bright pixels are far away, and dark pixels are close. As shown
in Fig. 3(b), the baseline model produces noisy structures despite
Lsmooth. On the other hand, Fig. 3(c) shows that Lnormal successfully

suppresses noise even for the real image. However, the result still
has large depth error as shown in the green box where the depth
of an aisle is incorrectly estimated as very close. Finally, Fig. 3(d)
shows that Ladv successfully improves the accuracy for the real im-
age more accurately detecting the depth of the aisle.

Figs. 4 and 5 show qualitative comparisons of our method with
Zioulis et al. [8] on synthetic and real panorama images, respec-
tively. Zioulis et al. [8]‘s model is trained with 360D [8] datasets.
The input images in Figs. 4 and 5 are from the 360D and SUN360
datasets, respectively, and they are not used for training. For syn-
thetic panorama images, both Zioulis et al.’s method and ours
show reasonable results while our results are less noisy and sharper
thanks to the surface normal loss. On the other hand, for real
panorama images in Fig. 5, Zioulis et al.’s method produces a sig-
nificant amount of errors due to the domain difference between the
real and synthetic panorama images while our method still pro-
duces accurate results thanks to our domain adaptation. We refer
the readers to the supplementary material for more examples.

Finally, we quantitatively compare our method with previous
state-of-the-art approaches on synthetic panorama images. We
compare our method with two panorama image depth estimation
approaches [8, 11] and five non-panorama image depth estimation
approaches [15, 16, 17, 18, 19]. Zioulis et al. [8, 11]‘s two models
are trained with 360D [8] datasets and a set of rendered panorama
pairs made out of [21, 22, 23], respectively. [15] is trained with
outdoor scenes such as KITTI [24] dataset, and other four non-
panorama image depth estimation approaches [16, 17, 18, 19] are
trained with NYUD-V2 [25] dataset. For quantitative comparison,
we use the test set of the 360D dataset [8]. Since the non-panorama
image methods are not trained for panorama images, it is unfair to
directly compare our method with them. For a fair comparison, as
Zioulis et al. [8] did, we divide a 360◦ panorama image into mul-
tiple subimages with a standard FoV by cube map projection and
estimate a depth map for each image. Then, we merge the multiple
depth maps into a panorama depth map using sphere projection.
We use the final depth map for measuring the performance of the
non-panorama image depth estimation methods. Table 1 shows that
our method outperforms both panorama and non-panorama image
depth estimation methods, which indicates that our approach also
improves quantitative performance on synthetic panorama images
while successfully reducing the domain gap between the synthetic
and real panorama images.

4 Conclusion

In this paper, we presented a novel deep learning-based approach
for depth map estimation from a single real panorama image
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Figure 3: Ablation study on a real panorama image from the
SUN360 dataset [14].
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for depth map estimation from a single real panorama image

In
pu

t
G

T
[8

]
O

ur
s

Figure 4: Qualitative comparison on synthetic panorama images in the 360D dataset [8].
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Figure 5: Qualitative comparison on real panorama images in the SUN360 dataset [14].

by bridging the domain difference between real and synthetic
panorama images using domain adaptation. As previous works rely
on synthetic datasets, they are not guaranteed to accurately pre-
dict the depth from real panorama images. To address the lack of
datasets with real panorama images for depth estimation, we in-
troduced domain adaptation based on an adversarial loss for depth
estimation from panorama images. We also proposed a surface nor-
mal loss to suppress noise in estimated depth maps. The quantita-
tive and qualitative results demonstrate that our approach can ef-
fectively reduce the domain gap and accurately estimate the depth
from synthetic panorama images.
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