
한국컴퓨터그래픽스학회
Korea Computer Graphics Society� Vol. 29, No. 4, P. 7~16

*corresponding author: Taesoo Kwon / Department of Computer Science, Hanyang University Graduate School (taesoobear@gmail.com)

Received : 2023.06.28./ Review completed : 1st 2023.07.30. / Accepted : 2023.08.16.
DOI : 10.15701/kcgs.2023.29.4.7
ISSN : 1975-7883(Print)/2383-529X(Online)

- 7 -

캐릭터 복싱 과제에서 GAN 기반 접근법과 강화학습의

효과성 탐구

손서영O 권태수*

한양대학교 일반대학원 컴퓨터소프트웨어학과

ameliacode@hanyang.ac.kr, taesoobear@gmail.com

Exploring the Effectiveness of GAN-based Approach and
Reinforcement Learning in Character Boxing Task

Seoyoung SonO Taesoo Kwon*

Department of Computer Science, Hanyang University Graduate School, South Korea

Abstract
For decades, creating a desired locomotive motion in a goal-oriented manner has been a challenge in character animation. Data-
driven methods using generative models have demonstrated efficient ways of predicting long sequences of motions without the
need for explicit conditioning. While these methods produce high-quality long-term motions, they can be limited when it comes to
synthesizing motion for challenging novel scenarios, such as punching a random target. A state-of-the-art solution to overcome this
limitation is by using a GAN Discriminator to imitate motion data clips and incorporating reinforcement learning to compose goal-
oriented motions. In this paper, our research aims to create characters performing combat sports such as boxing, using a novel
reward design in conjunction with existing GAN-based approaches. We experimentally demonstrate that both the Adversarial
Motion Prior [3] and Adversarial Skill Embeddings [4] methods are capable of generating viable motions for a character punching a
random target, even in the absence of mocap data that specifically captures the transition between punching and locomotion. Also,
with a single learned policy, multiple task controllers can be constructed through the TimeChamber framework.

요 약

캐릭터 애니메이션 분야에서 목표 지향적 이동을 위해 원하는 궤적을 재현하는 것은 항상 어려운 과제이다. 생성 모델을
사용하는 데이터 기반 방법은 명시적인 조건 없이 긴 동작 시퀀스를 예측하는 효율적인 방법 중 하나이다. 이러한 방법은
고품질의 결과물을 생성해내지만, 멀리 있는 목표물을 무작위로 타격하는 것처럼 더 어려운 상황의 모션을
합성(synthesis)에 있어서는 제한될 수 있다. 하지만 이는 모션 데이터 클립을 모방하는 GAN Discriminator 를 사용하고 강화
학습을 통해 해결할 수 있다. 본 연구는 캐릭터들이 GAN 기반 접근법과 리워드 설계를 통해 복싱을 구현하는 것을 목표로
한다. 논문에서 사용된 두 가지의 최신 연구인 Adversarial Motion Prior 와 Adversarial Skill Embedding 에 대해 비교
실험하며, 또한 복싱을 경쟁 스포츠에 적용하기 위하여 멀티 에이전트 강화 학습을 위한 대규모 self-play 프레임워크인
TimeChamber 를 활용한다.

키워드: 캐릭터 애니메이션, 물리기반 시뮬레이션, 강화학습, GAN

Keywords: Character Animation, Physics-based Simulation, Reinforcement Learning, GAN

1. Introduction

With the advancements in GPUs and the increasing performance of
computers, users nowadays can experience diverse virtual
environments, plunging themselves into virtual characters. It has

become essential that characters move similarly to reality in virtual
space. Given a limited amount of motion capture data, developing
control strategies for characters has been a long-standing problem in
character animation. Traditionally, motion generation has been solved
by manually re-arranging motion clips or connecting motion data as
nodes via directed graph structure [1], and for generating goal-

- 8 -

directed motion, path planning for a character’s valid trajectory, so-
called motion planning is an option. However, conventional methods
are limited in that they are not capable of producing diverse, complex
motions in a new environment that is different from the captured
environment.
Recent research interests have shifted to implementing deep

learning-based methods and have demonstrated efficient methods by
adapting generative models to predict plausible, diverse motion, and
reinforcement learning to produce task-based locomotion. Imitation
learning is one of the examples of deep learning-based approaches.
Multiple studies have demonstrated the application of imitation
learning to replicate physics-based motions by mimicking the
provided motion database. However, it is limited in that it cannot
respond to various scenarios when exposed to adversarial
surroundings. To cooperate interactions without explicit programming,
Generative Adversarial Imitation Learning [2] is an alternative to
imitation learning. Adversarial Motion Prior [3] and Adversarial Skill
Embeddings [4] are two notable approaches that apply generative
adversarial imitation learning to the field of character animation and
have shown remarkable results in generating natural motions. From
the perspective of a generative model, these two models leverage
Generative Adversarial Networks to provide information on the fake
distribution. Compared to approaches such as Variational
Autoencoder, this enables the seamless and natural execution of
different motions. Based on the data-driven methods, Reinforcement
Learning is integrated to enable characters to perform each task while
simultaneously preserving the distinctive features of the mocap data.
Chapter 2 of this paper will provide an overall survey of deep learning
methods.
On top of these state-of-the-art methods, we have implemented the

downstream tasks of punching and boxing. Our contributions can be
summarized as follows:

• We first review several generative model approaches and
reinforcement learning methods for generating physics-based tasks.
These methods train the system to perform desired tasks by
leveraging embedded skills or motion clips.

• We aim to enable our character to perform punching and boxing
tasks, and compare two existing, latest models for generating
dynamic motions: Adversarial Motion Prior, and Adversarial Skill
Embedding (ASE). Also, we implemented a boxing task with ASE
based on Competitive Multi-Agent Reinforcement Learning using

the TimeChamber framework. Our redesigned reward functions are
shown to be effective in several experiments.

2. Related works

In general, character animation can be categorized based on its
attributes: kinematic method and physics-based method. the former
predicts action spaces that consist of kinematic poses, while the latter
aims to produce joint torques through physics simulation. For the past
few years, recent studies have demonstrated generating kinematic or
physics-based motion through neural networks. Generating kinematic
motions through this approach has demonstrated plausible results
without the use of physical formulas [5-7], while a physics-based
approach has been shown to create more natural motion [8, 9].
Reconstructing motion through conditioning from latent space or

motion manifolds is one of the popular data-driven methods in the
latest works. It is meaningful in that its non-linear deformation
represents hidden variables or intrinsic features, underlying the data
[10]. Generative models are used to produce new variations and
transitions of a given character motion by learning a compact latent
space representation of motion data and sampling from it.

2.1 GAN in Character Animation

Data-driven methods using generative models such as Convolutional
Autoencoders [11], Conditional Variational Encoder (CVAE) [12-14],
and Normalizing Flows [15] demonstrated efficient ways of
predicting long sequences of motions Though these methods produce
long-term motion, several limitations still exist. As CVAE highly
depends on the prior distribution of its input data, it may be difficult to
establish a connection between different motions, which is known as
posterior collapse. This limitation can arise when synthesizing
motions in more complex scenarios, such as punching a random target.
To solve this, the explicit condition was used additionally to each
encoder and decoder to integrate acyclic motions [12] or preprocess
motion dataset via motion graph to overcome the lack of transition or
connectivity of each dataset [13]. Due to the lack of connection
between each corresponding skill and latent space, the discriminator
was additionally used in mapping conditioned by state-conditioned
prior and posterior prior [14]. This indicates an independent CVAE
highly depends on the quantity and distribution of the dataset, which
in turn, may fail to create transitions in distinct motions.
Generally, GAN generates new data samples that closely resemble

the ground truth by training a generator. This is achieved by training a

- 9 -

directed motion, path planning for a character’s valid trajectory, so-
called motion planning is an option. However, conventional methods
are limited in that they are not capable of producing diverse, complex
motions in a new environment that is different from the captured
environment.
Recent research interests have shifted to implementing deep

learning-based methods and have demonstrated efficient methods by
adapting generative models to predict plausible, diverse motion, and
reinforcement learning to produce task-based locomotion. Imitation
learning is one of the examples of deep learning-based approaches.
Multiple studies have demonstrated the application of imitation
learning to replicate physics-based motions by mimicking the
provided motion database. However, it is limited in that it cannot
respond to various scenarios when exposed to adversarial
surroundings. To cooperate interactions without explicit programming,
Generative Adversarial Imitation Learning [2] is an alternative to
imitation learning. Adversarial Motion Prior [3] and Adversarial Skill
Embeddings [4] are two notable approaches that apply generative
adversarial imitation learning to the field of character animation and
have shown remarkable results in generating natural motions. From
the perspective of a generative model, these two models leverage
Generative Adversarial Networks to provide information on the fake
distribution. Compared to approaches such as Variational
Autoencoder, this enables the seamless and natural execution of
different motions. Based on the data-driven methods, Reinforcement
Learning is integrated to enable characters to perform each task while
simultaneously preserving the distinctive features of the mocap data.
Chapter 2 of this paper will provide an overall survey of deep learning
methods.
On top of these state-of-the-art methods, we have implemented the

downstream tasks of punching and boxing. Our contributions can be
summarized as follows:

• We first review several generative model approaches and
reinforcement learning methods for generating physics-based tasks.
These methods train the system to perform desired tasks by
leveraging embedded skills or motion clips.

• We aim to enable our character to perform punching and boxing
tasks, and compare two existing, latest models for generating
dynamic motions: Adversarial Motion Prior, and Adversarial Skill
Embedding (ASE). Also, we implemented a boxing task with ASE
based on Competitive Multi-Agent Reinforcement Learning using

the TimeChamber framework. Our redesigned reward functions are
shown to be effective in several experiments.

2. Related works

In general, character animation can be categorized based on its
attributes: kinematic method and physics-based method. the former
predicts action spaces that consist of kinematic poses, while the latter
aims to produce joint torques through physics simulation. For the past
few years, recent studies have demonstrated generating kinematic or
physics-based motion through neural networks. Generating kinematic
motions through this approach has demonstrated plausible results
without the use of physical formulas [5-7], while a physics-based
approach has been shown to create more natural motion [8, 9].
Reconstructing motion through conditioning from latent space or

motion manifolds is one of the popular data-driven methods in the
latest works. It is meaningful in that its non-linear deformation
represents hidden variables or intrinsic features, underlying the data
[10]. Generative models are used to produce new variations and
transitions of a given character motion by learning a compact latent
space representation of motion data and sampling from it.

2.1 GAN in Character Animation

Data-driven methods using generative models such as Convolutional
Autoencoders [11], Conditional Variational Encoder (CVAE) [12-14],
and Normalizing Flows [15] demonstrated efficient ways of
predicting long sequences of motions Though these methods produce
long-term motion, several limitations still exist. As CVAE highly
depends on the prior distribution of its input data, it may be difficult to
establish a connection between different motions, which is known as
posterior collapse. This limitation can arise when synthesizing
motions in more complex scenarios, such as punching a random target.
To solve this, the explicit condition was used additionally to each
encoder and decoder to integrate acyclic motions [12] or preprocess
motion dataset via motion graph to overcome the lack of transition or
connectivity of each dataset [13]. Due to the lack of connection
between each corresponding skill and latent space, the discriminator
was additionally used in mapping conditioned by state-conditioned
prior and posterior prior [14]. This indicates an independent CVAE
highly depends on the quantity and distribution of the dataset, which
in turn, may fail to create transitions in distinct motions.
Generally, GAN generates new data samples that closely resemble

the ground truth by training a generator. This is achieved by training a

discriminator to the point where it cannot distinguish between the
ground truth and the generated data. Compared to VAEs, GAN
generates diverse, high-quality motions, and it is suitable for
transitioning between distinct actions such as kicking and punching.
Inspired by Generative Adversarial Imitation Learning (GAIL)[2]
framework and motion prior, which was used in pose estimation to
indicate the similarity between generated motion and ground truth,
Adversarial Motion Prior (AMP)[3] was introduced to generate novel
motion sequences without the need of explicit information on
selecting and sequencing. Discriminator, which is depicted as AMP,
first collects trajectories with policy. Unlike the state-action pair used
in GAIL, AMP is trained with state transitions as states are only
observed in data. Given trajectory information, the discriminator is
trained as a policy by least-squares regression problem with style-
reward function. The reward is then recorded trajectory and stored in
a replay buffer, which prevents the discriminator from overfitting and
stabilizes the training process. Once all trajectories are recorded with
rewards, recorded rewards are used to update policy and value
functions. The agent here, learns its actions by maximizing the
expectation value of the likelihood of the trajectory within a given
goal. Finally, the discriminator is updated by using mini batches of
transitions from sampled ground truth data and transitions from the
replay buffer.
Similar to AMP, Adversarial Skill Embedding (ASE)[4] also

adapted discriminator. However, unlike AMP, ASE proposed two
stages: a pre-training stage for low-level policy which is conditioned
by state and embedded skills, and a transferring embedded skills stage
for high-level policy. This hierarchical structure enables policy to
learn adequate physics-based actions without learning from scratch, as
AMP requires a whole dataset for different policies of each task. In
low-level policy training, the policy π(at|st, z) learns skill
embedding which is a result from imitating ground truth motions. In
this work, the latent space Z is modeled as a hypersphere. As the
sphere itself here is expected to have a uniform prior distribution, it
allows to prevent the result of unnatural action spaces. In each
iteration, a batch of trajectories is collected with a policy on sampled
latent from the unit sphere space. Rewards are specified as the sum of
a least-squares regression and latent representation from the encoder
at each time step. Each process is stored in a data buffer, and later this
information will be used in updating the encoder and discriminator by
sampling mini batches of transitions. Other works of recent studies
have shown generating novel data by using natural language
processing. Inspired from ASE, PADL [16] provides an effective

interface to users without requiring pre-knowledge, and enables the
character to direct its behavior

2.2 Reinforcement Learning

Controlling characters to a purposeful motion is one of the
challenges in computer animation. Planning trajectories for characters
[17] or supervising learning methods [18] showed promising results in
kinematic animation. In physics-based animation, reinforcement
learning is widely used for its pure objective [9], imitating reference
data [8], or synthesizing motion while optimizing [19]. This is
because motions from dynamic models go through a simulator in one
way, where non-differentiable prediction cannot be reused as
optimization [20].
Multi-agent reinforcement learning (MARL) involves developing

algorithms for multiple agents to learn and interact with one another
in a shared environment. Each autonomous agent receives rewards by
their individual actions and collective states from a multi-agent
environment while cooperating or competing with others. Several
MARL works have demonstrated competitive policies for physics-
based character control [21], as well as for hide-and-seek games [22].
For a human-like result, Won et al. [23] first, imitates the motion and
then, train the two agents in a competitive scenario. Similar to this
approach, TimeChamber [24], a self-play framework for multiple
agents inspired by ASE, trains two agents to discover skills and is
constrained by low-level policy, where it is trained previously in the
pre-training stage of ASE. The overall transferring stage is based on a
classic PPO self-play algorithm, which allows multiple agents to learn
from playing against each other and improve while training.

3. Experiments

3.1 Data preprocessing

First, we collected related mocap data from CMU [25] for our task.
Our database included from simple locomotion to boxing actions. To
adjust the existing humanoid model, the mocap dataset was retargeted.
Irrelevant joints were dropped in this process while keeping similar
joints by their names. As a result, 31 joints in the original data were
reduced to 28 joints. Inspired by Won et al. [23] both hands in
humanoid are 1.75 times larger (see Figure 1).

- 10 -

Figure 1. Humanoid character heading x-axis in default pose

Then, the data were weighted according to the different motion types
of files for balancing overall distribution. The weights were set
according to the ratio based on the largest amount of motion type.
Suppose there are two data types: A and B, and type A is larger than
B. To apply such a rule, the following weight would be:

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑏𝑏 = 𝑛𝑛(𝐴𝐴)
𝑛𝑛(𝐵𝐵) (1)

Table 1 summarizes the type of motion data and weights that were
used in training. The same datasets were used in each task.

Dataset Clips Length (secs) Weights

Locomotion 17 248.46s 1.0

Boxing 5 74.11s 3.4

Table 1. Summary of applied weights in each data

3.2 Character Punching Task

Character punching tasks consist of two independent scenarios: run
straight forward then, punch (punching task), or run towards to target
while facing randomly (joystick task). Both scenarios use the same
mocap data and the same environment. The character will be directed
to attack a plain cuboid target that measures 0.4m x 0.4m x 1.8m. The
target will be placed randomly within a range of 5 to 10m.
Using Motion Prior, we have designed a new environment for

characters to randomly punch targets. Unlike previous work on AMP
using Bullet physics engine [26], we conducted experiments utilizing
the publicly accessible AMP implementation built upon Isaac Gym
[27], a GPU-based physics simulated environment, to simulate in
4096 parallel environments. A single NVIDIA RTX 2080Ti GPU
was used in this case. We also took advantage of ASE to compare

AMP. The same motion assets and environment used in AMP were
used in training low-level policy in ASE. Unlike the AMP framework,
ASE employs a low-level policy in transferring stage. High-level
policy in this stage trains a meaningful latent vector based on the state,
goal-state, and reward. Each training time took approximately 10 days
in pre-training and 22 hours in transferring. Both stages were trained
on a single GPU, NVIDIA RTX 2080Ti GPU.
Inspired by the task weighting approach in PADL[16], we departed

from the use of static weights for both the task and the discriminator.
Instead, we adopted dynamic task weights on training ASE, akin to
those regulated by a proportional-derivative (PD) controller. This
adaptive scheme facilitates a balanced consideration of task and skill
rewards promoting efficiency.

3.2.1 Observation Spaces

Our observation spaces for two different scenarios are similar to
each other. We additionally appended local target moving and facing
direction in the joystick task. The target moving direction in the
joystick task is a local direction between the target cuboid and the
character’s initial position. The target facing direction, on the other
hand, is a random local facing direction where it remains until the
environment resets. Both directions are projected onto the ground.
Table 2 describes our continuous observation spaces used in detail.

A

B

Index Description

0-2 Local position between the target cuboid and the
character’s root

3-6 Local rotation between the target cuboid and the
character’s root

7-10 Local linear velocity between target linear velocity
and the character’s root

11-14 Local angle velocity between target angle velocity
and the character’s root

 15-16 Local target direction between the target moving
direction and the character’s root

17-18 Local facing direction between target facing direction
of the character ‘s root

Table 2. Observation spaces in two downstream tasks: A-joystick
task, B-punching task

3.2.2 Task-Related Reward Function

To strike a target in a natural way, we have divided our task into a
2-step behavior as suggested by AMP. If the target’s location and root
position’s difference is longer than 1.2m, the character first
approaches the given target. The character then strikes the target if it is
within the distance threshold. When punching a target, we have
mainly focused on the target’s up-vector solely whether it is struck or

- 11 -

Figure 1. Humanoid character heading x-axis in default pose

Then, the data were weighted according to the different motion types
of files for balancing overall distribution. The weights were set
according to the ratio based on the largest amount of motion type.
Suppose there are two data types: A and B, and type A is larger than
B. To apply such a rule, the following weight would be:

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑏𝑏 = 𝑛𝑛(𝐴𝐴)
𝑛𝑛(𝐵𝐵) (1)

Table 1 summarizes the type of motion data and weights that were
used in training. The same datasets were used in each task.

Dataset Clips Length (secs) Weights

Locomotion 17 248.46s 1.0

Boxing 5 74.11s 3.4

Table 1. Summary of applied weights in each data

3.2 Character Punching Task

Character punching tasks consist of two independent scenarios: run
straight forward then, punch (punching task), or run towards to target
while facing randomly (joystick task). Both scenarios use the same
mocap data and the same environment. The character will be directed
to attack a plain cuboid target that measures 0.4m x 0.4m x 1.8m. The
target will be placed randomly within a range of 5 to 10m.
Using Motion Prior, we have designed a new environment for

characters to randomly punch targets. Unlike previous work on AMP
using Bullet physics engine [26], we conducted experiments utilizing
the publicly accessible AMP implementation built upon Isaac Gym
[27], a GPU-based physics simulated environment, to simulate in
4096 parallel environments. A single NVIDIA RTX 2080Ti GPU
was used in this case. We also took advantage of ASE to compare

AMP. The same motion assets and environment used in AMP were
used in training low-level policy in ASE. Unlike the AMP framework,
ASE employs a low-level policy in transferring stage. High-level
policy in this stage trains a meaningful latent vector based on the state,
goal-state, and reward. Each training time took approximately 10 days
in pre-training and 22 hours in transferring. Both stages were trained
on a single GPU, NVIDIA RTX 2080Ti GPU.
Inspired by the task weighting approach in PADL[16], we departed

from the use of static weights for both the task and the discriminator.
Instead, we adopted dynamic task weights on training ASE, akin to
those regulated by a proportional-derivative (PD) controller. This
adaptive scheme facilitates a balanced consideration of task and skill
rewards promoting efficiency.

3.2.1 Observation Spaces

Our observation spaces for two different scenarios are similar to
each other. We additionally appended local target moving and facing
direction in the joystick task. The target moving direction in the
joystick task is a local direction between the target cuboid and the
character’s initial position. The target facing direction, on the other
hand, is a random local facing direction where it remains until the
environment resets. Both directions are projected onto the ground.
Table 2 describes our continuous observation spaces used in detail.

A

B

Index Description

0-2 Local position between the target cuboid and the
character’s root

3-6 Local rotation between the target cuboid and the
character’s root

7-10 Local linear velocity between target linear velocity
and the character’s root

11-14 Local angle velocity between target angle velocity
and the character’s root

 15-16 Local target direction between the target moving
direction and the character’s root

17-18 Local facing direction between target facing direction
of the character ‘s root

Table 2. Observation spaces in two downstream tasks: A-joystick
task, B-punching task

3.2.2 Task-Related Reward Function

To strike a target in a natural way, we have divided our task into a
2-step behavior as suggested by AMP. If the target’s location and root
position’s difference is longer than 1.2m, the character first
approaches the given target. The character then strikes the target if it is
within the distance threshold. When punching a target, we have
mainly focused on the target’s up-vector solely whether it is struck or

not. Based on AMP striking downstream task’s reward design, we
redefined and improved 𝑟𝑟𝑓𝑓𝑎𝑎𝑎𝑎 to reflect all the circumstances of
relative position, velocity, and facing term of the character. These
terms are multiplied as a product in 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 . Also, compared to the
previous return, the facing term is additionally appended. Our task-
related reward function is defined as follows:

 𝑟𝑟𝑡𝑡 = {
1.4
0.3 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 0.3
0.3 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓

if target hits
if ∥ 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∥ < 1.2𝑚𝑚
else

In 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , the reward motivates the character’s hands to reach and
strike a target. The first term 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 encourages the character to punch
the target by hand while 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 constrains glove’s striking velocity. The
largest 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is then, selected between the left and right gloves. 𝑑𝑑 here,
is a unit vector of character facing the direction to a goal.

𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 0.2 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 0.8 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 (2)
𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = exp(−4 ∥ 𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∥ 2) (3)

𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 = clamp(𝑑𝑑 ∙ 𝑣𝑣𝑣𝑣𝑙𝑙ℎ𝑎𝑎𝑎𝑎𝑎𝑎 , 0.0,1.0) (4)

On the other hand, 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 stimulates the character to get closer to the
target. Both the punching task and the joystick task share the same
reward function. Overall, 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 aims to maximize and confine its value
to 1.0. Equivalent to the first term in 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 in 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 enables
character to get closer to target.

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (5)
𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = exp(−∥ 𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∥2) (6)

The second term 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 diminishes the error between the character’s
velocity 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 with goal direction 𝑑𝑑∗and target speed 𝑣𝑣𝑣𝑣𝑙𝑙∗ (1.2m/s).
𝑒𝑒𝑒𝑒𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 calculates tangential speed error where 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a root
velocity projected onto the ground.

𝑒𝑒𝑒𝑒𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑣𝑣𝑣𝑣𝑙𝑙∗ − 𝑑𝑑∗ ∙ 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (7)

𝑒𝑒𝑒𝑒𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 = ∑(𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑒𝑒𝑒𝑒𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑑𝑑∗) (8)

𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 = exp(−4 ∥ (𝑒𝑒𝑒𝑒𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣)2 + (𝑒𝑒𝑒𝑒𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2 ∥) (9)

To directly face the desired direction, we added the facing reward
𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 allows the character to minimize the error between

the target facing direction 𝑑̂𝑑 and the current character’s heading
direction 𝑑̅𝑑. Both heading directions are normalized. Ablation study
for facing reward, see Figure 3.

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = exp(−5 ∥ 𝑑̅𝑑 ∙ 𝑑̂𝑑 − 1 ∥) (10)

In short, 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 maximizes the overall reward value by minimizing the
distance between the character and the target (𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), closely
approximating the specified speed and the linear velocity (𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣) and
ensuring the character faces the target (𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). By satisfying all these

conditions, the character is prompted to punch the given cuboid.

3.3 Character Boxing Task

In this task, we have applied a framework for multi-agents to
compete with each other as boxing, TimeChamber. Based on ASE,
the competitive policy learned by the discriminator will be transferred
as a high-level policy to each agent. In this way, both agents learn
tactics against their opponents based on basic skills. In addition to the
previous task, our boxing task was trained in Isaac Gym, with 4096
parallel environments in a single GPU. Motivated by ASE task
training, TimeChamber learns adequate latent information which fits
the situation. For diversity in playing boxing games, TimeChamber
has implemented a pool of opponent players where it is prioritized
and sorted by winning rate and consists of high-level policy, winning
rate, and environment index. Through the training, opponents are
sampled based on their winning rate, then allocated to each parallel
environment. End of each game, the winning rates are updated in the
player pool. This depends on the ELO rating system, which calculates
the relative skill levels of two players.
Compared to a single agent environment, observation space in a

competitive environment additionally contains the opponent’s
behavior state in local. The observation size is 65 in total.

3.3.1 Task-Related Reward Function

Our boxing strategy is akin to that of a punching task. When the
opponent is considered far from the player, the player approaches the
opponent player. Then, the player maneuvers to strike down the
opponent with a high return.

𝑟𝑟𝑡𝑡 = {
500
 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓

if the opponent falls
if ∥ 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∥ < 1.75𝑚𝑚
else

When approaching each other, 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 enables the character to get
closer to the opponent (𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝) while maintaining a target speed 1.2m/s
(𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣). 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 allows players to face forward since attacking an
opponent from behind is considered as violation in boxing (see Figure

- 12 -

9). This minimizes the error between target facing direction 𝑑̂𝑑 and the
current character’s heading direction 𝑑̅𝑑.

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 = 0.5𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 + 0.4𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 + 0.1𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (11)
𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 = exp(−0.5 ∥ 𝑝𝑝𝑝𝑝𝑠𝑠𝑜𝑜𝑜𝑜 − 𝑝𝑝𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∥ 2) (12)

𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 = exp (−4.0 ∥ max(0, 1.2 − 𝑑𝑑 ∙ 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ∥ 2) (13)
𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = min (0.0, 𝑑̅𝑑 ∙ 𝑑̂𝑑) (14)

In 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , unlike the punching task, a penalty is added if the player
itself has fallen or crossed the arena boundary. A penalty for facing
direction has also been added as a regulation in boxing. Without a
facing penalty, the player may tend to attack their opponent while
holding down from behind. If the opponent falls, the player gets a
reward value of 500. The overall reward function is similar to that of
downstream strike task’s from TimeChamber. Table 3 includes the
weights that were used in the reward function.

𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+ 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∗ 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 measures how player have damaged by force. All forces
are normal forces that are contacted to the player (𝐹𝐹𝑜𝑜𝑜𝑜→𝑒𝑒𝑒𝑒𝑒𝑒) or the
opponent 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒→𝑜𝑜𝑜𝑜).

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = min (−200,𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒→𝑜𝑜𝑜𝑜 − 2 ∗ 𝐹𝐹𝑜𝑜𝑜𝑜→𝑒𝑒𝑒𝑒𝑒𝑒) (15)

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 motivates the character to punch the opponent’s target point:
torso and head. 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is identical to 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 that was used in the
punching task. 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 encourages players and the opponent to face
each other. 𝑑𝑑 denotes the opponent’s local facing direction to the
player while 𝑑̂𝑑 is the character’s local facing direction to the opponent.
Both directions are normalized. The previous facing reward from
Won et al. [23] presents a challenge in enabling characters to perform
proper boxing maneuvers. It only considers whether the character
faces the target, disregarding the opponent’s heading direction. This
allows the agent to attack in the opposite direction (see Figure 9).

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = exp(−5 ∥ −𝑑̅𝑑 ∙ 𝑑̂𝑑 − 1 ∥) (16)

If the opponent is about to fall, 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 calculates the error between the
opponent’s up-vector 𝑣𝑣𝑜𝑜𝑜𝑜 and global up-vector 𝑣𝑣𝑢𝑢𝑢𝑢 . To restrain
character to attack backward we only give fall reward when facing
each other. 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 induces characters to behave effectively and less
aggressively where 𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 is the angular acceleration of character’s
joint and 𝑙𝑙 is a distance between the players.

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.6 ∗ min (1 − 𝑣𝑣𝑢𝑢𝑢𝑢 ∙ 𝑣𝑣𝑜𝑜𝑜𝑜, 0.0) (17)

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = exp (−10 ∗∑ || max (0.0, 𝑙𝑙 − 1.0)||2) (18)

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗∑||𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗||
2
 (19)

𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 1.0

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 4.0
𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 10.0
𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 200.0
𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0.001
𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 30.0

Table 3. Weights in boxing reward function

4. Result

4.1 Evaluation of Character Punching Task

Compared to the previous AMP environment, it required
approximately 8 hours which resulted in 140 hours, where the training
time has been significantly reduced. This can be done by training with
parallel environments, which allows the network to collect data faster.
Not only does this improves the training time, but it also improves the
overall correlation between multiple trajectories in the dataset. Our
work snapshots are depicted in Figure 2.

Figure 2. Based on generated motions from control policy, the
character heads toward to target and strikes it.

If the facing term is ignored, the character tends to punch a target
disregarding the facing direction, which leads to an unnatural style of
locomotion. Without the term, the character maintains the initial
facing direction while approaching (see Figure 3). Throughout the
experiment, having a reward for facing direction is significant as it
allows the character to retain its initial random facing while moving
toward the target in the joystick task (see Figure 4). Although tuning
the facing error is necessary, it still holds importance. Overall learning
curves increase gradually in both tasks.

- 13 -

9). This minimizes the error between target facing direction 𝑑̂𝑑 and the
current character’s heading direction 𝑑̅𝑑.

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 = 0.5𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 + 0.4𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 + 0.1𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (11)
𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 = exp(−0.5 ∥ 𝑝𝑝𝑝𝑝𝑠𝑠𝑜𝑜𝑜𝑜 − 𝑝𝑝𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∥ 2) (12)

𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 = exp (−4.0 ∥ max(0, 1.2 − 𝑑𝑑 ∙ 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ∥ 2) (13)
𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = min (0.0, 𝑑̅𝑑 ∙ 𝑑̂𝑑) (14)

In 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , unlike the punching task, a penalty is added if the player
itself has fallen or crossed the arena boundary. A penalty for facing
direction has also been added as a regulation in boxing. Without a
facing penalty, the player may tend to attack their opponent while
holding down from behind. If the opponent falls, the player gets a
reward value of 500. The overall reward function is similar to that of
downstream strike task’s from TimeChamber. Table 3 includes the
weights that were used in the reward function.

𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+ 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∗ 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 measures how player have damaged by force. All forces
are normal forces that are contacted to the player (𝐹𝐹𝑜𝑜𝑜𝑜→𝑒𝑒𝑒𝑒𝑒𝑒) or the
opponent 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒→𝑜𝑜𝑜𝑜).

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = min (−200,𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒→𝑜𝑜𝑜𝑜 − 2 ∗ 𝐹𝐹𝑜𝑜𝑜𝑜→𝑒𝑒𝑒𝑒𝑒𝑒) (15)

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 motivates the character to punch the opponent’s target point:
torso and head. 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is identical to 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 that was used in the
punching task. 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 encourages players and the opponent to face
each other. 𝑑𝑑 denotes the opponent’s local facing direction to the
player while 𝑑̂𝑑 is the character’s local facing direction to the opponent.
Both directions are normalized. The previous facing reward from
Won et al. [23] presents a challenge in enabling characters to perform
proper boxing maneuvers. It only considers whether the character
faces the target, disregarding the opponent’s heading direction. This
allows the agent to attack in the opposite direction (see Figure 9).

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = exp(−5 ∥ −𝑑̅𝑑 ∙ 𝑑̂𝑑 − 1 ∥) (16)

If the opponent is about to fall, 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 calculates the error between the
opponent’s up-vector 𝑣𝑣𝑜𝑜𝑜𝑜 and global up-vector 𝑣𝑣𝑢𝑢𝑢𝑢 . To restrain
character to attack backward we only give fall reward when facing
each other. 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 induces characters to behave effectively and less
aggressively where 𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 is the angular acceleration of character’s
joint and 𝑙𝑙 is a distance between the players.

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.6 ∗ min (1 − 𝑣𝑣𝑢𝑢𝑢𝑢 ∙ 𝑣𝑣𝑜𝑜𝑜𝑜, 0.0) (17)

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = exp (−10 ∗∑ || max (0.0, 𝑙𝑙 − 1.0)||2) (18)

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗∑||𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗||
2
 (19)

𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 1.0

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 4.0
𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 10.0
𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 200.0
𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0.001
𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 30.0

Table 3. Weights in boxing reward function

4. Result

4.1 Evaluation of Character Punching Task

Compared to the previous AMP environment, it required
approximately 8 hours which resulted in 140 hours, where the training
time has been significantly reduced. This can be done by training with
parallel environments, which allows the network to collect data faster.
Not only does this improves the training time, but it also improves the
overall correlation between multiple trajectories in the dataset. Our
work snapshots are depicted in Figure 2.

Figure 2. Based on generated motions from control policy, the
character heads toward to target and strikes it.

If the facing term is ignored, the character tends to punch a target
disregarding the facing direction, which leads to an unnatural style of
locomotion. Without the term, the character maintains the initial
facing direction while approaching (see Figure 3). Throughout the
experiment, having a reward for facing direction is significant as it
allows the character to retain its initial random facing while moving
toward the target in the joystick task (see Figure 4). Although tuning
the facing error is necessary, it still holds importance. Overall learning
curves increase gradually in both tasks.

Figure 3. The character’s initial heading direction is maintained while
approaching the target, resulting in unnatural locomotion.

In the joystick task, the character manages to face the desired
direction while heading towards to the target. The red arrow and blue
arrow are illustrated in Figure 4 where each arrow points to the target
and desired heading direction respectively.
Both tasks’ learning curves increased gradually in training. This

denotes that a character tends to behave to obtain maximum rewards.
Figure 5 shows the learning curves of mean rewards on each task.

Figure 4. Characters tend to face the desired random direction which
is represented in a blue arrow. (Top) Facing Backwards, (Middle)
Facing Sideways, (Bottom) Facing Front.

(a) Punching (b) Joystick

Figure 5. Learning curves of mean reward on each task

Our experiment with ASE on punching task fulfills its task too.
However, while the character moves toward the target, it behaves
unnaturally compared to the result from AMP. This may have
occurred due to the exploitation of a discriminator, which results in
the character to behave a subset of specific skills as the given latent
information returns the utmost reward (see Figure 6). Furthermore,
the data utilized in the research only included essential information
due to limitations in available GPU resources. To address this issue
potential strategies involve training a low-level policy utilizing a
range of diverse datasets, or alternatively, generating distinct latent
vectors for each individual dataset. These methods aim to effectively
mitigate the phenomenon of mode collapse. Overall training time took
approximately 22 hours. Figure 7 shows the learning curves of its
average task returns and task weight. Task weight is updated
automatically via PD Controller. This enables to balance between task
and style reward weight.

Figure 6. The humanoid faces toward to target and strikes it. Unlike
the same task trained from AMP, the character tends to punch less
aggressively with low energy.

- 14 -

(a) Mean reward (b) Task weight

Figure 7. Learning curves of average task return in punching task via
ASE and its task weight.

4.2 Evaluation of Character Boxing Task

Training time for character boxing task took around 6 to 7 days.
Multi-agent reinforcement learning spent a longer time due to its non-
stationery feature and increased complexity. Also balance between
exploration and exploitation trade-off might be a reason for this as
well. Hence, learning curves in MARL might not increase constantly,
especially in scenarios like competitive, zero-sum game environments.
Meaningful skills emerged as the epoch increased. After training with
40000 epochs, the characters attacked and defended themselves
naturally (see Figure 8).

Figure 8. Characters tend to stretch their arms to defend themselves
from their opponent. Also, the character learns to headlock the
opponent and it defends itself by untangling the tactic.

Figure 9. Won et al. [23]’s prior reward method poses a challenge for
characters attacking from behind, as it ignores the opponent’s heading
direction and may cause the agent to attack in the wrong direction.

5. Conclusion

In this paper, we explored effective frameworks of recent studies
with our character punching and boxing tasks by comparing two
existing methods: AMP and ASE. Without requiring explicit
conditioning in the form of sequences or labels, both models
illustrated natural transitions on locomotion and punching.
However, AMP is limited to dealing with various tasks with a single

motion prior. Since a discriminator alone does not contain implicit
information in the latent space, which enables to recover distinct
behavior for each data, it becomes necessary to train it from scratch
for different individual tasks. Also, AMP is prone to mode collapse if
the task objective is vague, which leads to repeating specific behavior.
ASE, on the other hand, uses a low-level policy to learn a latent space
of meaningful skills. During the pre-training task, the low-level policy
is trained to balance and imitate behaviors from the dataset. When
training task-oriented high-level policy, the low-level policy
constrains the set of possible actions. This reduces exploiting
abnormal movements compared to the prior model. Still, ASE is also
prone to mode collapse in that the combined reward between the
latent information of the corresponding trajectory and discriminator
may exploit only a portion of the skills. PADL solves it by allocating
unique latent information to each motion dataset. Motivated by the
task weight from PADL, instead of using fixed weights for tasks and
the discriminator, we implemented task weights which are adjusted in
a way similar to a PD controller.
We also demonstrate a competitive boxing task performed by two

characters via TimeChamber, an ASE-based framework. Due to the
complex nature of competitive MARL, the training time was longer
compared to the single-agent environment. Also, finding the balance
between exploration and exploitation is intricate as the agents observe

- 15 -

(a) Mean reward (b) Task weight

Figure 7. Learning curves of average task return in punching task via
ASE and its task weight.

4.2 Evaluation of Character Boxing Task

Training time for character boxing task took around 6 to 7 days.
Multi-agent reinforcement learning spent a longer time due to its non-
stationery feature and increased complexity. Also balance between
exploration and exploitation trade-off might be a reason for this as
well. Hence, learning curves in MARL might not increase constantly,
especially in scenarios like competitive, zero-sum game environments.
Meaningful skills emerged as the epoch increased. After training with
40000 epochs, the characters attacked and defended themselves
naturally (see Figure 8).

Figure 8. Characters tend to stretch their arms to defend themselves
from their opponent. Also, the character learns to headlock the
opponent and it defends itself by untangling the tactic.

Figure 9. Won et al. [23]’s prior reward method poses a challenge for
characters attacking from behind, as it ignores the opponent’s heading
direction and may cause the agent to attack in the wrong direction.

5. Conclusion

In this paper, we explored effective frameworks of recent studies
with our character punching and boxing tasks by comparing two
existing methods: AMP and ASE. Without requiring explicit
conditioning in the form of sequences or labels, both models
illustrated natural transitions on locomotion and punching.
However, AMP is limited to dealing with various tasks with a single

motion prior. Since a discriminator alone does not contain implicit
information in the latent space, which enables to recover distinct
behavior for each data, it becomes necessary to train it from scratch
for different individual tasks. Also, AMP is prone to mode collapse if
the task objective is vague, which leads to repeating specific behavior.
ASE, on the other hand, uses a low-level policy to learn a latent space
of meaningful skills. During the pre-training task, the low-level policy
is trained to balance and imitate behaviors from the dataset. When
training task-oriented high-level policy, the low-level policy
constrains the set of possible actions. This reduces exploiting
abnormal movements compared to the prior model. Still, ASE is also
prone to mode collapse in that the combined reward between the
latent information of the corresponding trajectory and discriminator
may exploit only a portion of the skills. PADL solves it by allocating
unique latent information to each motion dataset. Motivated by the
task weight from PADL, instead of using fixed weights for tasks and
the discriminator, we implemented task weights which are adjusted in
a way similar to a PD controller.
We also demonstrate a competitive boxing task performed by two

characters via TimeChamber, an ASE-based framework. Due to the
complex nature of competitive MARL, the training time was longer
compared to the single-agent environment. Also, finding the balance
between exploration and exploitation is intricate as the agents observe

moving objects while maximizing their return. As the training epoch
increases, the character becomes capable of performing more
meaningful and sophisticated skills. However, as noted in ASE, some
movements such as “walking” towards the opponent aren’t natural.
For future work, implementing a diffusion model could be a

promising direction. The diffusion model is one of the popular
methods in recent works and it generates high-quality kinematic
motions through stochastic processes [28-30]. Physics-based motion
controllers based on a pre-trained diffusion model also exists [31].
However, most of the state-of-the-art existing diffusion models aim to
control a single character. It would be intriguing to build an
adversarial environment to interact with multiple agents while the user
uses natural language prompts to control characters. We look forward
to building interesting environments on top of generative models.

Acknowledgments
This work was supported by the National Research Foundation of

Korea (NRF) grant funded by the Korea government (MSIT) (NRF-
2020R1A2C1012847).

References
[1] L. Kovar, M. Gleicher, and F. Pighin, "Motion graphs," ACM

SIGGRAPH 2008 classes, pp. 1-10, 2008.
[2] J. Ho, and S. Ermon, “Generative adversarial imitation learning,”

Advances in neural information processing systems, vol. 29,
2016.

[3] X. B. Peng et al., “Amp: Adversarial motion priors for stylized
physics-based character control,” ACM Transactions on
Graphics (TOG), vol. 40, no. 4, pp. 1-20, 2021.

[4] X. B. Peng et al., “ASE: Large-Scale Reusable Adversarial Skill
Embeddings for Physically Simulated Characters,” arXiv
preprint arXiv:2205.01906, 2022.

[5] D. Holden, T. Komura, and J. Saito, “Phase-functioned neural
networks for character control,” ACM Transactions on Graphics
(TOG), vol. 36, no. 4, pp. 1-13, 2017.

[6] H. Zhang et al., “Mode-adaptive neural networks for quadruped
motion control,” ACM Transactions on Graphics (TOG), vol.
37, no. 4, pp. 1-11, 2018.

[7] D. Holden et al., “Learned motion matching,” ACM
Transactions on Graphics (TOG), vol. 39, no. 4, pp. 53: 1-53:
12, 2020.

[8] X. B. Peng et al., “Deeploco: Dynamic locomotion skills using
hierarchical deep reinforcement learning,” ACM Transactions
on Graphics (TOG), vol. 36, no. 4, pp. 1-13, 2017.

[9] W. Yu, G. Turk, and C. K. Liu, “Learning symmetric and low-
energy locomotion,” ACM Transactions on Graphics (TOG),
vol. 37, no. 4, pp. 1-12, 2018.

[10] A. Elgammal, and C.-S. Lee, "The role of manifold learning in
human motion analysis," Human Motion, pp. 25-56: Springer,
2008.

[11] D. Holden, J. Saito, and T. Komura, “A deep learning
framework for character motion synthesis and editing,” ACM
Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1-11, 2016.

[12] H. Y. Ling et al., “Character controllers using motion vaes,”
ACM Transactions on Graphics (TOG), vol. 39, no. 4, pp. 40: 1-
40: 12, 2020.

[13] J. Won, D. Gopinath, and J. Hodgins, “Physics-based character
controllers using conditional VAEs,” ACM Transactions on
Graphics (TOG), vol. 41, no. 4, pp. 1-12, 2022.

[14] H. Yao et al., “ControlVAE: Model-Based Learning of
Generative Controllers for Physics-Based Characters,” ACM
Transactions on Graphics (TOG), vol. 41, no. 6, pp. 1-16, 2022.

[15] G. E. Henter, S. Alexanderson, and J. Beskow, “Moglow:
Probabilistic and controllable motion synthesis using
normalising flows,” ACM Transactions on Graphics (TOG), vol.
39, no. 6, pp. 1-14, 2020.

[16] J. Juravsky et al., "PADL: Language-Directed Physics-Based
Character Control." pp. 1-9.

[17] S. Agrawal, and M. van de Panne, “Task-based locomotion,”
ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1-11,
2016.

[18] K. Lee, S. Lee, and J. Lee, “Interactive character animation by
learning multi-objective control,” ACM Transactions on
Graphics (TOG), vol. 37, no. 6, pp. 1-10, 2018.

[19] J. Merel et al., “Catch & carry: reusable neural controllers for
vision-guided whole-body tasks,” ACM Transactions on
Graphics (TOG), vol. 39, no. 4, pp. 39: 1-39: 12, 2020.

[20] L. Fussell, K. Bergamin, and D. Holden, “Supertrack: Motion
tracking for physically simulated characters using supervised
learning,” ACM Transactions on Graphics (TOG), vol. 40, no. 6,
pp. 1-13, 2021.

[21] T. Bansal et al., “Emergent complexity via multi-agent
competition,” arXiv preprint arXiv:1710.03748, 2017.

[22] B. Baker et al., “Emergent tool use from multi-agent
autocurricula,” arXiv preprint arXiv:1909.07528, 2019.

- 16 -

[23] J. Won, D. Gopinath, and J. Hodgins, “Control strategies for
physically simulated characters performing two-player
competitive sports,” ACM Transactions on Graphics (TOG), vol.
40, no. 4, pp. 1-11, 2021.

[24] Z. L. Huang Ziming, Wu Yutong, Flood Sung. "TimeChamber:
A Massively Parallel Large Scale Self-Play Framework,"
https://github.com/inspirai/TimeChamber.

[25] CMU, "CMU Graphics Lab Motion Capture Database," 2002.
[26] E. Coumans, “Bullet physics library,” Open source:

bulletphysics. org, vol. 15, no. 49, pp. 5, 2013.
[27] V. Makoviychuk et al., “Isaac gym: High performance gpu-

based physics simulation for robot learning,” arXiv preprint
arXiv:2108.10470, 2021.

[28] G. Tevet et al., “Human motion diffusion model,” arXiv
preprint arXiv:2209.14916, 2022.

[29] M. Zhang et al., “Motiondiffuse: Text-driven human motion
generation with diffusion model,” arXiv preprint
arXiv:2208.15001, 2022.

[30] Y. Shafir et al., “Human Motion Diffusion as a Generative
Prior,” arXiv preprint arXiv:2303.01418, 2023.

[31] Y. Yuan et al., “PhysDiff: Physics-Guided Human Motion
Diffusion Model,” arXiv preprint arXiv:2212.02500, 2022.

< 저 자 소 개 >
손 서 영
•	2017 ~ 2021 세종대학교 소프트웨어학과 학사
•	2021 ~ 2023 한양대학교 컴퓨터소프트웨어학과
석사

•	관심분야: Character animation,
Reinforcement learning,

•	Physics based simulation, Pose estimation
•	https://orcid.org/0009-0009-7291-3953

권 태 수
•	1996-2000 서울대학교 전기컴퓨터공학부
학사

•	2000-2002 서울대학교 전기컴퓨터공학부
석사

•	2002-2007 한국과학기술원 전산학전공 박사
•	관심 분야: Character Animation, Physically-
based Animation

•	https://orcid.org/0000-0002-9253-2156

