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Abstract 
For decades, creating a desired locomotive motion in a goal-oriented manner has been a challenge in character animation. Data-
driven methods using generative models have demonstrated efficient ways of predicting long sequences of motions without the 
need for explicit conditioning. While these methods produce high-quality long-term motions, they can be limited when it comes to 
synthesizing motion for challenging novel scenarios, such as punching a random target. A state-of-the-art solution to overcome this 
limitation is by using a GAN Discriminator to imitate motion data clips and incorporating reinforcement learning to compose goal-
oriented motions. In this paper, our research aims to create characters performing combat sports such as boxing, using a novel 
reward design in conjunction with existing GAN-based approaches. We experimentally demonstrate that both the Adversarial 
Motion Prior [3] and Adversarial Skill Embeddings [4] methods are capable of generating viable motions for a character punching a 
random target, even in the absence of mocap data that specifically captures the transition between punching and locomotion. Also, 
with a single learned policy, multiple task controllers can be constructed through the TimeChamber framework. 
 

요   약 

캐릭터 애니메이션 분야에서 목표 지향적 이동을 위해 원하는 궤적을 재현하는 것은 항상 어려운 과제이다. 생성 모델을 
사용하는 데이터 기반 방법은 명시적인 조건 없이 긴 동작 시퀀스를 예측하는 효율적인 방법 중 하나이다. 이러한 방법은 
고품질의 결과물을 생성해내지만, 멀리 있는 목표물을 무작위로 타격하는 것처럼 더 어려운 상황의 모션을 
합성(synthesis)에 있어서는 제한될 수 있다. 하지만 이는 모션 데이터 클립을 모방하는 GAN Discriminator 를 사용하고 강화 
학습을 통해 해결할 수 있다. 본 연구는 캐릭터들이 GAN 기반 접근법과 리워드 설계를 통해 복싱을 구현하는 것을 목표로 
한다. 논문에서 사용된 두 가지의 최신 연구인 Adversarial Motion Prior 와 Adversarial Skill Embedding 에 대해 비교 
실험하며, 또한 복싱을 경쟁 스포츠에 적용하기 위하여 멀티 에이전트 강화 학습을 위한 대규모 self-play 프레임워크인 
TimeChamber 를 활용한다. 
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1.  Introduction  

With the advancements in GPUs and the increasing performance of 
computers, users nowadays can experience diverse virtual 
environments, plunging themselves into virtual characters. It has 

become essential that characters move similarly to reality in virtual 
space. Given a limited amount of motion capture data, developing 
control strategies for characters has been a long-standing problem in 
character animation. Traditionally, motion generation has been solved 
by manually re-arranging motion clips or connecting motion data as 
nodes via directed graph structure [1], and for generating goal-
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directed motion, path planning for a character’s valid trajectory, so-
called motion planning is an option. However, conventional methods 
are limited in that they are not capable of producing diverse, complex 
motions in a new environment that is different from the captured 
environment. 
Recent research interests have shifted to implementing deep 

learning-based methods and have demonstrated efficient methods by 
adapting generative models to predict plausible, diverse motion, and 
reinforcement learning to produce task-based locomotion. Imitation 
learning is one of the examples of deep learning-based approaches. 
Multiple studies have demonstrated the application of imitation 
learning to replicate physics-based motions by mimicking the 
provided motion database. However, it is limited in that it cannot 
respond to various scenarios when exposed to adversarial 
surroundings. To cooperate interactions without explicit programming, 
Generative Adversarial Imitation Learning [2] is an alternative to 
imitation learning. Adversarial Motion Prior [3] and Adversarial Skill 
Embeddings [4] are two notable approaches that apply generative 
adversarial imitation learning to the field of character animation and 
have shown remarkable results in generating natural motions. From 
the perspective of a generative model, these two models leverage 
Generative Adversarial Networks to provide information on the fake 
distribution. Compared to approaches such as Variational 
Autoencoder, this enables the seamless and natural execution of 
different motions. Based on the data-driven methods, Reinforcement 
Learning is integrated to enable characters to perform each task while 
simultaneously preserving the distinctive features of the mocap data. 
Chapter 2 of this paper will provide an overall survey of deep learning 
methods.  
On top of these state-of-the-art methods, we have implemented the 

downstream tasks of punching and boxing. Our contributions can be 
summarized as follows:  

• We first review several generative model approaches and 
reinforcement learning methods for generating physics-based tasks.  
These methods train the system to perform desired tasks by 
leveraging embedded skills or motion clips.  

• We aim to enable our character to perform punching and boxing 
tasks, and compare two existing, latest models for generating 
dynamic motions: Adversarial Motion Prior, and Adversarial Skill 
Embedding (ASE). Also, we implemented a boxing task with ASE 
based on Competitive Multi-Agent Reinforcement Learning using 

the TimeChamber framework. Our redesigned reward functions are 
shown to be effective in several experiments. 

2. Related works 

In general, character animation can be categorized based on its 
attributes: kinematic method and physics-based method. the former 
predicts action spaces that consist of kinematic poses, while the latter 
aims to produce joint torques through physics simulation. For the past 
few years, recent studies have demonstrated generating kinematic or 
physics-based motion through neural networks. Generating kinematic 
motions through this approach has demonstrated plausible results 
without the use of physical formulas [5-7], while a physics-based 
approach has been shown to create more natural motion [8, 9].  
Reconstructing motion through conditioning from latent space or 

motion manifolds is one of the popular data-driven methods in the 
latest works. It is meaningful in that its non-linear deformation 
represents hidden variables or intrinsic features, underlying the data 
[10]. Generative models are used to produce new variations and 
transitions of a given character motion by learning a compact latent 
space representation of motion data and sampling from it. 

2.1 GAN in Character Animation 

Data-driven methods using generative models such as Convolutional 
Autoencoders [11], Conditional Variational Encoder (CVAE) [12-14], 
and Normalizing Flows [15] demonstrated efficient ways of 
predicting long sequences of motions Though these methods produce 
long-term motion, several limitations still exist. As CVAE highly 
depends on the prior distribution of its input data, it may be difficult to 
establish a connection between different motions, which is known as 
posterior collapse. This limitation can arise when synthesizing 
motions in more complex scenarios, such as punching a random target. 
To solve this, the explicit condition was used additionally to each 
encoder and decoder to integrate acyclic motions [12] or preprocess 
motion dataset via motion graph to overcome the lack of transition or 
connectivity of each dataset [13]. Due to the lack of connection 
between each corresponding skill and latent space, the discriminator 
was additionally used in mapping conditioned by state-conditioned 
prior and posterior prior [14]. This indicates an independent CVAE 
highly depends on the quantity and distribution of the dataset, which 
in turn, may fail to create transitions in distinct motions.  
Generally, GAN generates new data samples that closely resemble 

the ground truth by training a generator. This is achieved by training a 
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and Normalizing Flows [15] demonstrated efficient ways of 
predicting long sequences of motions Though these methods produce 
long-term motion, several limitations still exist. As CVAE highly 
depends on the prior distribution of its input data, it may be difficult to 
establish a connection between different motions, which is known as 
posterior collapse. This limitation can arise when synthesizing 
motions in more complex scenarios, such as punching a random target. 
To solve this, the explicit condition was used additionally to each 
encoder and decoder to integrate acyclic motions [12] or preprocess 
motion dataset via motion graph to overcome the lack of transition or 
connectivity of each dataset [13]. Due to the lack of connection 
between each corresponding skill and latent space, the discriminator 
was additionally used in mapping conditioned by state-conditioned 
prior and posterior prior [14]. This indicates an independent CVAE 
highly depends on the quantity and distribution of the dataset, which 
in turn, may fail to create transitions in distinct motions.  
Generally, GAN generates new data samples that closely resemble 

the ground truth by training a generator. This is achieved by training a 

discriminator to the point where it cannot distinguish between the 
ground truth and the generated data. Compared to VAEs, GAN 
generates diverse, high-quality motions, and it is suitable for 
transitioning between distinct actions such as kicking and punching. 
Inspired by Generative Adversarial Imitation Learning (GAIL)[2] 
framework and motion prior, which was used in pose estimation to 
indicate the similarity between generated motion and ground truth, 
Adversarial Motion Prior (AMP)[3] was introduced to generate novel 
motion sequences without the need of explicit information on 
selecting and sequencing. Discriminator, which is depicted as AMP, 
first collects trajectories with policy. Unlike the state-action pair used 
in GAIL, AMP is trained with state transitions as states are only 
observed in data. Given trajectory information, the discriminator is 
trained as a policy by least-squares regression problem with style-
reward function. The reward is then recorded trajectory and stored in 
a replay buffer, which prevents the discriminator from overfitting and 
stabilizes the training process. Once all trajectories are recorded with 
rewards, recorded rewards are used to update policy and value 
functions. The agent here, learns its actions by maximizing the 
expectation value of the likelihood of the trajectory within a given 
goal. Finally, the discriminator is updated by using mini batches of 
transitions from sampled ground truth data and transitions from the 
replay buffer. 
Similar to AMP, Adversarial Skill Embedding (ASE)[4] also 

adapted discriminator. However, unlike AMP, ASE proposed two 
stages: a pre-training stage for low-level policy which is conditioned 
by state and embedded skills, and a transferring embedded skills stage 
for high-level policy. This hierarchical structure enables policy to 
learn adequate physics-based actions without learning from scratch, as 
AMP requires a whole dataset for different policies of each task. In 
low-level policy training, the policy π(at|st, z)  learns skill 
embedding which is a result from imitating ground truth motions. In 
this work, the latent space Z is modeled as a hypersphere. As the 
sphere itself here is expected to have a uniform prior distribution, it 
allows to prevent the result of unnatural action spaces. In each 
iteration, a batch of trajectories is collected with a policy on sampled 
latent from the unit sphere space. Rewards are specified as the sum of 
a least-squares regression and latent representation from the encoder 
at each time step. Each process is stored in a data buffer, and later this 
information will be used in updating the encoder and discriminator by 
sampling mini batches of transitions. Other works of recent studies 
have shown generating novel data by using natural language 
processing. Inspired from ASE, PADL [16] provides an effective 

interface to users without requiring pre-knowledge, and enables the 
character to direct its behavior 

2.2 Reinforcement Learning 

Controlling characters to a purposeful motion is one of the 
challenges in computer animation. Planning trajectories for characters 
[17] or supervising learning methods [18] showed promising results in 
kinematic animation. In physics-based animation, reinforcement 
learning is widely used for its pure objective [9], imitating reference 
data [8], or synthesizing motion while optimizing [19]. This is 
because motions from dynamic models go through a simulator in one 
way, where non-differentiable prediction cannot be reused as 
optimization [20].  
Multi-agent reinforcement learning (MARL) involves developing 

algorithms for multiple agents to learn and interact with one another 
in a shared environment. Each autonomous agent receives rewards by 
their individual actions and collective states from a multi-agent 
environment while cooperating or competing with others. Several 
MARL works have demonstrated competitive policies for physics-
based character control [21], as well as for hide-and-seek games [22]. 
For a human-like result, Won et al. [23] first, imitates the motion and 
then, train the two agents in a competitive scenario. Similar to this 
approach, TimeChamber [24], a self-play framework for multiple 
agents inspired by ASE, trains two agents to discover skills and is 
constrained by low-level policy, where it is trained previously in the 
pre-training stage of ASE. The overall transferring stage is based on a 
classic PPO self-play algorithm, which allows multiple agents to learn 
from playing against each other and improve while training. 

3. Experiments  

3.1 Data preprocessing 

First, we collected related mocap data from CMU [25] for our task. 
Our database included from simple locomotion to boxing actions. To 
adjust the existing humanoid model, the mocap dataset was retargeted. 
Irrelevant joints were dropped in this process while keeping similar 
joints by their names. As a result, 31 joints in the original data were 
reduced to 28 joints. Inspired by Won et al. [23] both hands in 
humanoid are 1.75 times larger (see Figure 1). 
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Figure 1. Humanoid character heading x-axis in default pose 

Then, the data were weighted according to the different motion types 
of files for balancing overall distribution. The weights were set 
according to the ratio based on the largest amount of motion type. 
Suppose there are two data types: A and B, and type A is larger than 
B. To apply such a rule, the following weight would be: 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑏𝑏 =  𝑛𝑛(𝐴𝐴)
𝑛𝑛(𝐵𝐵) (1) 

Table 1 summarizes the type of motion data and weights that were 
used in training. The same datasets were used in each task. 
  

Dataset Clips Length (secs) Weights 

Locomotion 17 248.46s 1.0 

Boxing 5 74.11s 3.4 

Table 1. Summary of applied weights in each data 

3.2 Character Punching Task 

Character punching tasks consist of two independent scenarios: run 
straight forward then, punch (punching task), or run towards to target 
while facing randomly (joystick task). Both scenarios use the same 
mocap data and the same environment. The character will be directed 
to attack a plain cuboid target that measures 0.4m x 0.4m x 1.8m. The 
target will be placed randomly within a range of 5 to 10m. 
Using Motion Prior, we have designed a new environment for 

characters to randomly punch targets. Unlike previous work on AMP 
using Bullet physics engine [26], we conducted experiments utilizing 
the publicly accessible AMP implementation built upon Isaac Gym 
[27], a GPU-based physics simulated environment, to simulate in 
4096 parallel environments. A single NVIDIA RTX 2080Ti GPU 
was used in this case. We also took advantage of ASE to compare 

AMP. The same motion assets and environment used in AMP were 
used in training low-level policy in ASE. Unlike the AMP framework, 
ASE employs a low-level policy in transferring stage. High-level 
policy in this stage trains a meaningful latent vector based on the state, 
goal-state, and reward. Each training time took approximately 10 days 
in pre-training and 22 hours in transferring. Both stages were trained 
on a single GPU, NVIDIA RTX 2080Ti GPU.  
Inspired by the task weighting approach in PADL[16], we departed 

from the use of static weights for both the task and the discriminator. 
Instead, we adopted dynamic task weights on training ASE, akin to 
those regulated by a proportional-derivative (PD) controller. This 
adaptive scheme facilitates a balanced consideration of task and skill 
rewards promoting efficiency. 

3.2.1 Observation Spaces 

Our observation spaces for two different scenarios are similar to 
each other. We additionally appended local target moving and facing 
direction in the joystick task. The target moving direction in the 
joystick task is a local direction between the target cuboid and the 
character’s initial position. The target facing direction, on the other 
hand, is a random local facing direction where it remains until the 
environment resets. Both directions are projected onto the ground. 
Table 2 describes our continuous observation spaces used in detail. 

A 

B 

Index Description 

0-2 Local position between the target cuboid and the 
character’s root 

3-6 Local rotation between the target cuboid and the 
character’s root 

7-10 Local linear velocity between target linear velocity 
and the character’s root 

11-14 Local angle velocity between target angle velocity 
and the character’s root 

 15-16 Local target direction between the target moving 
direction and the character’s root 

17-18 Local facing direction between target facing direction 
of the character ‘s root 

Table 2. Observation spaces in two downstream tasks: A-joystick 
task, B-punching task 

3.2.2 Task-Related Reward Function 

To strike a target in a natural way, we have divided our task into a 
2-step behavior as suggested by AMP. If the target’s location and root 
position’s difference is longer than 1.2m, the character first 
approaches the given target. The character then strikes the target if it is 
within the distance threshold. When punching a target, we have 
mainly focused on the target’s up-vector solely whether it is struck or 
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approaches the given target. The character then strikes the target if it is 
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not. Based on AMP striking downstream task’s reward design, we 
redefined and improved 𝑟𝑟𝑓𝑓𝑎𝑎𝑎𝑎  to reflect all the circumstances of 
relative position, velocity, and facing term of the character. These 
terms are multiplied as a product in 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 . Also, compared to the 
previous return, the facing term is additionally appended. Our task-
related reward function is defined as follows: 

 𝑟𝑟𝑡𝑡 =  {  
1.4
0.3 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 0.3
0.3 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓

            
if target hits
if ∥  𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∥ < 1.2𝑚𝑚
else

 

In  𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , the reward motivates the character’s hands to reach and 
strike a target. The first term  𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  encourages the character to punch 
the target by hand while 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣  constrains glove’s striking velocity. The 
largest 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is then, selected between the left and right gloves. 𝑑𝑑 here, 
is a unit vector of character facing the direction to a goal.  

𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 0.2 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 0.8 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 (2) 
𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = exp(−4 ∥ 𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∥ 2) (3) 

𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 = clamp(𝑑𝑑 ∙ 𝑣𝑣𝑣𝑣𝑙𝑙ℎ𝑎𝑎𝑎𝑎𝑎𝑎 , 0.0,1.0) (4) 

On the other hand, 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓  stimulates the character to get closer to the 
target. Both the punching task and the joystick task share the same 
reward function. Overall, 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 aims to maximize and confine its value 
to 1.0. Equivalent to the first term in 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  in 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓  enables 
character to get closer to target. 

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 =  𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 ∗  𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (5) 
𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = exp(−∥ 𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∥2 ) (6) 

The second term 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣  diminishes the error between the character’s 
velocity 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  with goal direction 𝑑𝑑∗and target speed 𝑣𝑣𝑣𝑣𝑙𝑙∗ (1.2m/s). 
𝑒𝑒𝑒𝑒𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣  calculates tangential speed error where 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is a root 
velocity projected onto the ground. 

𝑒𝑒𝑒𝑒𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑣𝑣𝑣𝑣𝑙𝑙∗ − 𝑑𝑑∗ ∙ 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (7) 

𝑒𝑒𝑒𝑒𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 = ∑(𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑒𝑒𝑒𝑒𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑑𝑑∗)  (8) 

𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 = exp(−4 ∥  (𝑒𝑒𝑒𝑒𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣)2 + (𝑒𝑒𝑒𝑒𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2 ∥) (9) 

To directly face the desired direction, we added the facing reward 
𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  allows the character to minimize the error between 

the target facing direction 𝑑̂𝑑  and the current character’s heading 
direction  𝑑̅𝑑. Both heading directions are normalized. Ablation study 
for facing reward, see Figure 3.  

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = exp(−5 ∥ 𝑑̅𝑑 ∙ 𝑑̂𝑑 − 1 ∥) (10) 

In short,  𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓  maximizes the overall reward value by minimizing the 
distance between the character and the target ( 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ), closely 
approximating the specified speed and the linear velocity (𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣) and 
ensuring the character faces the target (𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). By satisfying all these 

conditions, the character is prompted to punch the given cuboid. 

3.3 Character Boxing Task 

In this task, we have applied a framework for multi-agents to 
compete with each other as boxing, TimeChamber. Based on ASE, 
the competitive policy learned by the discriminator will be transferred 
as a high-level policy to each agent. In this way, both agents learn 
tactics against their opponents based on basic skills. In addition to the 
previous task, our boxing task was trained in Isaac Gym, with 4096 
parallel environments in a single GPU. Motivated by ASE task 
training, TimeChamber learns adequate latent information which fits 
the situation. For diversity in playing boxing games, TimeChamber 
has implemented a pool of opponent players where it is prioritized 
and sorted by winning rate and consists of high-level policy, winning 
rate, and environment index. Through the training, opponents are 
sampled based on their winning rate, then allocated to each parallel 
environment. End of each game, the winning rates are updated in the 
player pool. This depends on the ELO rating system, which calculates 
the relative skill levels of two players. 
Compared to a single agent environment, observation space in a 

competitive environment additionally contains the opponent’s 
behavior state in local. The observation size is 65 in total.  

3.3.1 Task-Related Reward Function 

Our boxing strategy is akin to that of a punching task. When the 
opponent is considered far from the player, the player approaches the 
opponent player. Then, the player maneuvers to strike down the 
opponent with a high return.   

𝑟𝑟𝑡𝑡 =  {  
500
 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓

            
if the opponent falls
if ∥  𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∥ < 1.75𝑚𝑚
else

 

When approaching each other, 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  enables the character to get 
closer to the opponent (𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝) while maintaining a target speed 1.2m/s 
(𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 ). 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  allows players to face forward since attacking an 
opponent from behind is considered as violation in boxing (see Figure 
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9). This minimizes the error between target facing direction 𝑑̂𝑑 and the 
current character’s heading direction 𝑑̅𝑑. 

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 = 0.5𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 + 0.4𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 + 0.1𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (11) 
𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 =  exp(−0.5 ∥ 𝑝𝑝𝑝𝑝𝑠𝑠𝑜𝑜𝑜𝑜 − 𝑝𝑝𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∥ 2) (12) 

𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 =  exp (−4.0 ∥ max(0, 1.2 − 𝑑𝑑 ∙  𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ∥ 2) (13) 
𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =   min (0.0, 𝑑̅𝑑 ∙ 𝑑̂𝑑) (14) 

In  𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , unlike the punching task, a penalty is added if the player 
itself has fallen or crossed the arena boundary. A penalty for facing 
direction has also been added as a regulation in boxing. Without a 
facing penalty, the player may tend to attack their opponent while 
holding down from behind. If the opponent falls, the player gets a 
reward value of 500. The overall reward function is similar to that of 
downstream strike task’s from TimeChamber. Table 3 includes the 
weights that were used in the reward function. 

𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+ 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∗ 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  measures how player have damaged by force. All forces 
are normal forces that are contacted to the player (𝐹𝐹𝑜𝑜𝑜𝑜→𝑒𝑒𝑒𝑒𝑒𝑒) or the 
opponent 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒→𝑜𝑜𝑜𝑜).  

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = min (−200,𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒→𝑜𝑜𝑜𝑜 − 2 ∗ 𝐹𝐹𝑜𝑜𝑜𝑜→𝑒𝑒𝑒𝑒𝑒𝑒) (15) 

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  motivates the character to punch the opponent’s target point: 
torso and head. 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is identical to 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  that was used in the 
punching task. 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 encourages players and the opponent to face 
each other. 𝑑𝑑  denotes the opponent’s local facing direction to the 
player while 𝑑̂𝑑 is the character’s local facing direction to the opponent. 
Both directions are normalized. The previous facing reward from 
Won et al. [23] presents a challenge in enabling characters to perform 
proper boxing maneuvers. It only considers whether the character 
faces the target, disregarding the opponent’s heading direction. This 
allows the agent to attack in the opposite direction (see Figure 9). 

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = exp(−5 ∥ −𝑑̅𝑑 ∙ 𝑑̂𝑑 − 1 ∥) (16) 

If the opponent is about to fall, 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  calculates the error between the 
opponent’s up-vector 𝑣𝑣𝑜𝑜𝑜𝑜  and global up-vector 𝑣𝑣𝑢𝑢𝑢𝑢 . To restrain 
character to attack backward we only give fall reward when facing 
each other. 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  induces characters to behave effectively and less 
aggressively where 𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  is the angular acceleration of character’s 
joint and 𝑙𝑙 is a distance between the players.   

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.6 ∗ min (1 − 𝑣𝑣𝑢𝑢𝑢𝑢 ∙ 𝑣𝑣𝑜𝑜𝑜𝑜, 0.0) (17) 

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = exp (−10 ∗∑ || max (0.0, 𝑙𝑙 − 1.0)||2) (18) 

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗∑||𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗||
2
 (19) 

 
𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  1.0 

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  4.0 
𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 10.0 
𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  200.0 
𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  0.001 
𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  30.0 

Table 3. Weights in boxing reward function 

4.  Result  

4.1 Evaluation of Character Punching Task 

Compared to the previous AMP environment, it required 
approximately 8 hours which resulted in 140 hours, where the training 
time has been significantly reduced. This can be done by training with 
parallel environments, which allows the network to collect data faster. 
Not only does this improves the training time, but it also improves the 
overall correlation between multiple trajectories in the dataset. Our 
work snapshots are depicted in Figure 2. 

 
Figure 2. Based on generated motions from control policy, the 
character heads toward to target and strikes it. 

If the facing term is ignored, the character tends to punch a target 
disregarding the facing direction, which leads to an unnatural style of 
locomotion. Without the term, the character maintains the initial 
facing direction while approaching (see Figure 3). Throughout the 
experiment, having a reward for facing direction is significant as it 
allows the character to retain its initial random facing while moving 
toward the target in the joystick task (see Figure 4). Although tuning 
the facing error is necessary, it still holds importance. Overall learning 
curves increase gradually in both tasks.   
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9). This minimizes the error between target facing direction 𝑑̂𝑑 and the 
current character’s heading direction 𝑑̅𝑑. 

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 = 0.5𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 + 0.4𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 + 0.1𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (11) 
𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 =  exp(−0.5 ∥ 𝑝𝑝𝑝𝑝𝑠𝑠𝑜𝑜𝑜𝑜 − 𝑝𝑝𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∥ 2) (12) 

𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣 =  exp (−4.0 ∥ max(0, 1.2 − 𝑑𝑑 ∙  𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ∥ 2) (13) 
𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =   min (0.0, 𝑑̅𝑑 ∙ 𝑑̂𝑑) (14) 

In  𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , unlike the punching task, a penalty is added if the player 
itself has fallen or crossed the arena boundary. A penalty for facing 
direction has also been added as a regulation in boxing. Without a 
facing penalty, the player may tend to attack their opponent while 
holding down from behind. If the opponent falls, the player gets a 
reward value of 500. The overall reward function is similar to that of 
downstream strike task’s from TimeChamber. Table 3 includes the 
weights that were used in the reward function. 

𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+ 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∗ 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  measures how player have damaged by force. All forces 
are normal forces that are contacted to the player (𝐹𝐹𝑜𝑜𝑜𝑜→𝑒𝑒𝑒𝑒𝑒𝑒) or the 
opponent 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒→𝑜𝑜𝑜𝑜).  

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = min (−200,𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒→𝑜𝑜𝑜𝑜 − 2 ∗ 𝐹𝐹𝑜𝑜𝑜𝑜→𝑒𝑒𝑒𝑒𝑒𝑒) (15) 

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  motivates the character to punch the opponent’s target point: 
torso and head. 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is identical to 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  that was used in the 
punching task. 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 encourages players and the opponent to face 
each other. 𝑑𝑑  denotes the opponent’s local facing direction to the 
player while 𝑑̂𝑑 is the character’s local facing direction to the opponent. 
Both directions are normalized. The previous facing reward from 
Won et al. [23] presents a challenge in enabling characters to perform 
proper boxing maneuvers. It only considers whether the character 
faces the target, disregarding the opponent’s heading direction. This 
allows the agent to attack in the opposite direction (see Figure 9). 

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = exp(−5 ∥ −𝑑̅𝑑 ∙ 𝑑̂𝑑 − 1 ∥) (16) 

If the opponent is about to fall, 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  calculates the error between the 
opponent’s up-vector 𝑣𝑣𝑜𝑜𝑜𝑜  and global up-vector 𝑣𝑣𝑢𝑢𝑢𝑢 . To restrain 
character to attack backward we only give fall reward when facing 
each other. 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  induces characters to behave effectively and less 
aggressively where 𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  is the angular acceleration of character’s 
joint and 𝑙𝑙 is a distance between the players.   

𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.6 ∗ min (1 − 𝑣𝑣𝑢𝑢𝑢𝑢 ∙ 𝑣𝑣𝑜𝑜𝑜𝑜, 0.0) (17) 

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = exp (−10 ∗∑ || max (0.0, 𝑙𝑙 − 1.0)||2) (18) 

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗∑||𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗||
2
 (19) 

 
𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  1.0 

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  4.0 
𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 10.0 
𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  200.0 
𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  0.001 
𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  30.0 

Table 3. Weights in boxing reward function 

4.  Result  

4.1 Evaluation of Character Punching Task 

Compared to the previous AMP environment, it required 
approximately 8 hours which resulted in 140 hours, where the training 
time has been significantly reduced. This can be done by training with 
parallel environments, which allows the network to collect data faster. 
Not only does this improves the training time, but it also improves the 
overall correlation between multiple trajectories in the dataset. Our 
work snapshots are depicted in Figure 2. 

 
Figure 2. Based on generated motions from control policy, the 
character heads toward to target and strikes it. 

If the facing term is ignored, the character tends to punch a target 
disregarding the facing direction, which leads to an unnatural style of 
locomotion. Without the term, the character maintains the initial 
facing direction while approaching (see Figure 3). Throughout the 
experiment, having a reward for facing direction is significant as it 
allows the character to retain its initial random facing while moving 
toward the target in the joystick task (see Figure 4). Although tuning 
the facing error is necessary, it still holds importance. Overall learning 
curves increase gradually in both tasks.   

 
Figure 3. The character’s initial heading direction is maintained while 
approaching the target, resulting in unnatural locomotion. 

In the joystick task, the character manages to face the desired 
direction while heading towards to the target. The red arrow and blue 
arrow are illustrated in Figure 4 where each arrow points to the target 
and desired heading direction respectively.   
Both tasks’ learning curves increased gradually in training. This 

denotes that a character tends to behave to obtain maximum rewards. 
Figure 5 shows the learning curves of mean rewards on each task. 

 

Figure 4. Characters tend to face the desired random direction which 
is represented in a blue arrow. (Top) Facing Backwards, (Middle) 
Facing Sideways, (Bottom) Facing Front. 

  

(a) Punching (b) Joystick 

Figure 5. Learning curves of mean reward on each task 

Our experiment with ASE on punching task fulfills its task too. 
However, while the character moves toward the target, it behaves 
unnaturally compared to the result from AMP. This may have 
occurred due to the exploitation of a discriminator, which results in 
the character to behave a subset of specific skills as the given latent 
information returns the utmost reward (see Figure 6). Furthermore, 
the data utilized in the research only included essential information 
due to limitations in available GPU resources. To address this issue 
potential strategies involve training a low-level policy utilizing a 
range of diverse datasets, or alternatively, generating distinct latent 
vectors for each individual dataset. These methods aim to effectively 
mitigate the phenomenon of mode collapse. Overall training time took 
approximately 22 hours. Figure 7 shows the learning curves of its 
average task returns and task weight. Task weight is updated 
automatically via PD Controller. This enables to balance between task 
and style reward weight. 

 

Figure 6. The humanoid faces toward to target and strikes it. Unlike 
the same task trained from AMP, the character tends to punch less 
aggressively with low energy. 
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(a) Mean reward (b) Task weight 

Figure 7. Learning curves of average task return in punching task via 
ASE and its task weight. 

4.2 Evaluation of Character Boxing Task 

Training time for character boxing task took around 6 to 7 days. 
Multi-agent reinforcement learning spent a longer time due to its non-
stationery feature and increased complexity. Also balance between 
exploration and exploitation trade-off might be a reason for this as 
well. Hence, learning curves in MARL might not increase constantly, 
especially in scenarios like competitive, zero-sum game environments. 
Meaningful skills emerged as the epoch increased. After training with 
40000 epochs, the characters attacked and defended themselves 
naturally (see Figure 8). 

 

Figure 8. Characters tend to stretch their arms to defend themselves 
from their opponent. Also, the character learns to headlock the 
opponent and it defends itself by untangling the tactic. 

 
Figure 9. Won et al. [23]’s prior reward method poses a challenge for 
characters attacking from behind, as it ignores the opponent’s heading 
direction and may cause the agent to attack in the wrong direction. 

5.  Conclusion  

In this paper, we explored effective frameworks of recent studies 
with our character punching and boxing tasks by comparing two 
existing methods: AMP and ASE. Without requiring explicit 
conditioning in the form of sequences or labels, both models 
illustrated natural transitions on locomotion and punching.    
However, AMP is limited to dealing with various tasks with a single 

motion prior. Since a discriminator alone does not contain implicit 
information in the latent space, which enables to recover distinct 
behavior for each data, it becomes necessary to train it from scratch 
for different individual tasks. Also, AMP is prone to mode collapse if 
the task objective is vague, which leads to repeating specific behavior. 
ASE, on the other hand, uses a low-level policy to learn a latent space 
of meaningful skills. During the pre-training task, the low-level policy 
is trained to balance and imitate behaviors from the dataset. When 
training task-oriented high-level policy, the low-level policy 
constrains the set of possible actions. This reduces exploiting 
abnormal movements compared to the prior model. Still, ASE is also 
prone to mode collapse in that the combined reward between the 
latent information of the corresponding trajectory and discriminator 
may exploit only a portion of the skills. PADL solves it by allocating 
unique latent information to each motion dataset. Motivated by the 
task weight from PADL, instead of using fixed weights for tasks and 
the discriminator, we implemented task weights which are adjusted in 
a way similar to a PD controller. 
We also demonstrate a competitive boxing task performed by two 

characters via TimeChamber, an ASE-based framework. Due to the 
complex nature of competitive MARL, the training time was longer 
compared to the single-agent environment. Also, finding the balance 
between exploration and exploitation is intricate as the agents observe 
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(a) Mean reward (b) Task weight 

Figure 7. Learning curves of average task return in punching task via 
ASE and its task weight. 

4.2 Evaluation of Character Boxing Task 

Training time for character boxing task took around 6 to 7 days. 
Multi-agent reinforcement learning spent a longer time due to its non-
stationery feature and increased complexity. Also balance between 
exploration and exploitation trade-off might be a reason for this as 
well. Hence, learning curves in MARL might not increase constantly, 
especially in scenarios like competitive, zero-sum game environments. 
Meaningful skills emerged as the epoch increased. After training with 
40000 epochs, the characters attacked and defended themselves 
naturally (see Figure 8). 

 

Figure 8. Characters tend to stretch their arms to defend themselves 
from their opponent. Also, the character learns to headlock the 
opponent and it defends itself by untangling the tactic. 

 
Figure 9. Won et al. [23]’s prior reward method poses a challenge for 
characters attacking from behind, as it ignores the opponent’s heading 
direction and may cause the agent to attack in the wrong direction. 

5.  Conclusion  

In this paper, we explored effective frameworks of recent studies 
with our character punching and boxing tasks by comparing two 
existing methods: AMP and ASE. Without requiring explicit 
conditioning in the form of sequences or labels, both models 
illustrated natural transitions on locomotion and punching.    
However, AMP is limited to dealing with various tasks with a single 

motion prior. Since a discriminator alone does not contain implicit 
information in the latent space, which enables to recover distinct 
behavior for each data, it becomes necessary to train it from scratch 
for different individual tasks. Also, AMP is prone to mode collapse if 
the task objective is vague, which leads to repeating specific behavior. 
ASE, on the other hand, uses a low-level policy to learn a latent space 
of meaningful skills. During the pre-training task, the low-level policy 
is trained to balance and imitate behaviors from the dataset. When 
training task-oriented high-level policy, the low-level policy 
constrains the set of possible actions. This reduces exploiting 
abnormal movements compared to the prior model. Still, ASE is also 
prone to mode collapse in that the combined reward between the 
latent information of the corresponding trajectory and discriminator 
may exploit only a portion of the skills. PADL solves it by allocating 
unique latent information to each motion dataset. Motivated by the 
task weight from PADL, instead of using fixed weights for tasks and 
the discriminator, we implemented task weights which are adjusted in 
a way similar to a PD controller. 
We also demonstrate a competitive boxing task performed by two 

characters via TimeChamber, an ASE-based framework. Due to the 
complex nature of competitive MARL, the training time was longer 
compared to the single-agent environment. Also, finding the balance 
between exploration and exploitation is intricate as the agents observe 

moving objects while maximizing their return. As the training epoch 
increases, the character becomes capable of performing more 
meaningful and sophisticated skills. However, as noted in ASE, some 
movements such as “walking” towards the opponent aren’t natural.     
For future work, implementing a diffusion model could be a 

promising direction. The diffusion model is one of the popular 
methods in recent works and it generates high-quality kinematic 
motions through stochastic processes [28-30]. Physics-based motion 
controllers based on a pre-trained diffusion model also exists [31]. 
However, most of the state-of-the-art existing diffusion models aim to 
control a single character. It would be intriguing to build an 
adversarial environment to interact with multiple agents while the user 
uses natural language prompts to control characters. We look forward 
to building interesting environments on top of generative models. 
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