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요약

측면 얼굴 사진을 입력으로 정면 얼굴을 생성하는 연구는 얼굴 인식 분야에서 중요한 주제 중 하나이다. 이를 해결하기 위
해, 본 연구에서는 여러 측면 얼굴 이미지를 입력으로 활용하여 성능을 향상시키는 방법을 제안하였다. 여러 각도의 얼굴
이미지를사용함으로써,특히 90도와같은큰각도에서도정확하게정면얼굴을재구성할수있는능력을향상시켰다.다중
이미지를 사용함으로써 단일 이미지 방식에서 놓칠 수 있는 세부 정보를 포착할 수 있어, 더 정확하고 신원 보존적인 정면
이미지를 생성할 수 있었다. 실험 결과, 본 연구의 방법이 기존 방식보다 성능이 크게 향상되었으며, 특히 극단적인 각도를
처리할때뛰어난성능을보였다.

Abstract

The task of generating frontal face images is a crucial challenge in the field of facial recognition. To address this, we propose
a method that improves performance by leveraging multiple side-face images as input. By using multiple views of the face, our
approach enhances the ability to accurately reconstruct the frontal face, even in cases with large pose variations, such as 90-degree
angles. The use of multiple images allows for the capture of details that are otherwise missed in single-image methods, leading
to more precise and identity-preserving frontal images. Experimental results show that our method significantly outperforms
existing approaches, especially in handling extreme pose angles, demonstrating its effectiveness in improving face frontalization
performance.

키워드: 얼굴정면화,얼굴인식,심층신경망
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1 Introduction

Face frontalization, which aims to synthesize a frontal view of
a face from a non-frontal image, has been an essential task in
computer vision and face recognition systems. Pose variations are
one of the most significant challenges in face recognition, as non-
frontal views often fail to provide complete and consistent facial
information. This issue is particularly critical in real-world appli-
cations such as surveillance systems, where cameras frequently
capture non-frontal faces, and in photo tagging or identity veri-

fication scenarios in uncontrolled environments. By generating a
frontal view of the face, face frontalization enhances the accuracy
of face recognition and facilitates tasks such as facial attribute anal-
ysis, emotion recognition, and virtual reality applications.

A well-known approach is the Face Normalization Model
(FNM) [1], which uses a single side-face image to generate a
frontal view. This model has been effective in many scenarios but
struggles when dealing with extreme pose variations or occlusions.
Another notable method is the Two-Pathway Generative Adversar-
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ial Network (TP-GAN) [2], which similarly uses a single image
to generate a frontal face. TP-GAN excels in preserving identity
features, which refer to the unique characteristics of a face, such
as the shape of facial structures, relative positions of key points
(eyes, nose, mouth), and texture patterns that distinguish one in-
dividual from another. These features are critical for ensuring that
the generated frontal image maintains the same identity as the input
image. However, like FNM, TP-GAN faces challenges with large
pose discrepancies and missing facial details due to occlusions in
the side-view images.

These methods, while successful in frontalizing faces from a sin-
gle input image, have inherent limitations. Single-image frontaliza-
tion can often produce incomplete or inaccurate reconstructions,
especially when the input face is at extreme angles (e.g., 90 de-
grees) or when parts of the face are occluded. These limitations
arise because a single image cannot provide sufficient information
about the hidden parts of the face, resulting in loss of critical fea-
tures during frontalization.

To address these issues, the Disentangled Representation learn-
ing Generative Adversarial Network (DR-GAN) [3] was intro-
duced, which allows the use of multiple images as input to improve
the robustness of the frontalization process. DR-GAN takes advan-
tage of multiple views of a face, learning from various poses and
expressions to generate a more accurate frontal image. However,
the model has a significant drawback: it requires the same num-
ber of multiple images during the training phase as well, making
it impractical when only a single or fewer images are available for
some identities during training. Additionally, DR-GAN does not
effectively handle extreme angles, such as 90-degree side views,
which can lead to degraded frontalization performance.

In this paper, we propose a new approach to face frontalization
that overcomes these limitations. Our method allows the model to
be trained on varying numbers of input images, removing the re-
striction of needing the same number of images during training and
testing. Additionally, our method explicitly handles extreme facial
angles, such as 90-degree side views, improving frontalization per-
formance in these challenging cases. By using multiple side-face
images as input and introducing a flexible architecture, we ensure
that our model produces high-quality, identity-preserving frontal
images, even under extreme conditions.

2 Related Works

Face frontalization has been studied extensively, and various
methodologies have been explored to tackle this challenging prob-
lem. Broadly, these approaches can be categorized into traditional
3D modeling methods, deep learning techniques (especially those

based on GANs), and more recent attempts that utilize multiple
images for frontalization.

2.1 3D Morphable Models (3DMM)

One of the earliest and most well-established methods for face
frontalization is based on 3D Morphable Models (3DMM) [4].
In this approach, a 3D model of a face is constructed from a
non-frontal image, which is then used to synthesize a frontal
view. While 3DMM has proven effective in various applications, it
has certain limitations. To achieve high-quality frontalization, the
method requires precise data acquisition and significant computa-
tional resources, making it less feasible for real-time applications
or cases with lower-quality input data. The optimization process
of fitting the 3D model to the input image can be computationally
expensive and time-consuming, hindering its scalability for large
datasets or practical deployments.

2.2 GAN-based Face Frontalization

With the advent of deep learning, particularly Generative Adver-
sarial Networks (GANs), face frontalization has seen substantial
improvements in both speed and accuracy. GANs are well-suited
for generating realistic frontal views from side-view images by
learning the mapping between poses and the corresponding frontal
images in a data-driven manner.

Among the notable GAN-based approaches are TP-GAN [2] and
FNM [1]. TP-GAN uses a two-pathway structure to preserve both
local and global features during frontalization, ensuring that iden-
tity features are maintained. FNM, on the other hand, focuses on
normalizing a side-face image to a frontal view by disentangling
pose and identity features, allowing for better identity-preserving
frontalization. Both methods demonstrate the power of GANs in
handling pose variations and generating realistic frontal images
from single side-face images. However, as discussed earlier, these
methods are limited in cases where extreme angles or occlusions
are present, as they rely on information from a single input image.

2.3 Multi-Image Face Frontalization

DR-GAN, introduced by [3], aimed to improve face frontalization
by utilizing multiple images as input, learning from different poses
to generate a more accurate frontal image. DR-GAN’s encoder-
decoder structure enabled the generation of a pose-invariant iden-
tity representation, and the model showed promising results in
frontalizing faces from various angles. However, this approach
also introduced some limitations. Notably, when multiple images
are used as input, DR-GAN requires the same number of images
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tures during frontalization.
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some identities during training. Additionally, DR-GAN does not
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be trained on varying numbers of input images, removing the re-
striction of needing the same number of images during training and
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angles, such as 90-degree side views, improving frontalization per-
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images as input and introducing a flexible architecture, we ensure
that our model produces high-quality, identity-preserving frontal
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lem. Broadly, these approaches can be categorized into traditional
3D modeling methods, deep learning techniques (especially those
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non-frontal image, which is then used to synthesize a frontal
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expensive and time-consuming, hindering its scalability for large
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With the advent of deep learning, particularly Generative Adver-
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for generating realistic frontal views from side-view images by
learning the mapping between poses and the corresponding frontal
images in a data-driven manner.

Among the notable GAN-based approaches are TP-GAN [2] and
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tity features are maintained. FNM, on the other hand, focuses on
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pose and identity features, allowing for better identity-preserving
frontalization. Both methods demonstrate the power of GANs in
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are present, as they rely on information from a single input image.
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Figure 1: Overall network architecture of our proposed method, Multi-Image FNM.

during the training phase, which reduces flexibility, especially in
scenarios where fewer images are available for certain identities.
Moreover, DR-GAN struggles to handle extreme pose variations,
such as 90-degree side profiles, leading to degraded performance
in such challenging cases.

3 Methodology

In our method, we extend the original FNM architecture to han-
dle multiple input images. This modified architecture, which we
refer to as the Multi-Images FNM, is designed to take advantage of
two side-face images, improving the robustness of the frontaliza-
tion process by combining features from different perspectives.

3.1 Multi-Images FNM

Our frontalization module consists of three main components: the
encoder E, the decoder D, and the feature fusion module.

• The encoder E is based on VGGFace2 [5], one of the pre-
trained face recognition models. This encoder transforms a
side-face image of size 224×224×3 into a 2048-dimensional
feature vector f . The use of a pre-trained encoder ensures
that we can capture identity-related features effectively, even
when the input images are captured from extreme angles. This
effectiveness arises because the encoder has been trained on
a large-scale dataset with diverse identities and pose varia-
tions, enabling it to learn robust and discriminative features
that generalize well to unseen scenarios. Mathematically, for

an input image I , the transformation can be written as:

fi = E(Ii) where Ii ∈ R224×224×3,fi ∈ R2048

• The feature fusion module is responsible for integrating the
multiple features extracted from different input images into a
single, unified feature representation. A detailed explanation
of this fusion process will be covered in Section 3.2.

• The decoder takes the fused 2048-dimensional feature vector
and generates a frontal image If of size 224×224×3. This pro-
cess essentially reverses the encoding operation, reconstruct-
ing the frontal image from the high-level feature representa-
tion. This can be represented as:

If = D(f) where If ∈ R224×224×3

Thus, the overall process of the Multi-Images FNM architecture
can be summarized by encoding multiple side-view images, fusing
their features, and finally decoding them into a frontalized image,
as shown in Figure 1.

3.2 Feature Fusion Module

The feature fusion module is a key component of our architecture,
designed to combine multiple feature vectors into a single, unified
representation. This module plays a critical role in ensuring that in-
formation from different side-view images is effectively integrated
to generate a high-quality frontal face.

As shown in Figure 2, we experimented with two fusion tech-
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Figure 2: Two fusion methods used for feature fusion module.

niques: max pooling and average pooling. These two pooling meth-
ods are widely used in deep learning for dimensionality reduction
and feature aggregation, allowing us to merge the extracted fea-
tures from multiple input images efficiently.

• Max Pooling: For each corresponding element in the feature
vectors, we select the maximum value across all input fea-
tures. This method captures the most dominant feature in each
dimension, ensuring that the strongest signals from each input
image are retained in the final feature representation.

• Average Pooling: We compute the average value for each cor-
responding element in the feature vectors. This method helps
in smoothing out the feature differences between images and
results in a more generalized representation that incorporates
information from all inputs equally.

In Figure 2, we show how these two fusion techniques combine
two feature vectors into one. However, one of the reasons we se-
lected these pooling methods is their flexibility in handling N input
features. Whether the input consists of two, three, or more side-face
images, the fusion module can seamlessly integrate any number of
feature vectors, making the system highly adaptable to various in-
put conditions.

This flexibility ensures that our model can generalize to scenar-
ios where different numbers of side-view images are available, en-
hancing the robustness of the frontalization process.

4 Training Strategy

In this section, we describe the training strategy used for our pro-
posed module. During training, a total of four images are input
into the model. These consist of two random frontal images from
the frontal image set and two random profile images from the pro-
file image set which is a non-frontal face image set, each from a
different subject.

Let If1 and If2 represent the two random frontal images from
the same subject, and Ip1 and Ip2 represent the two random pro-
file images from another same subject. These four images are pro-
cessed to generate two frontalized outputs, as shown in Figure 1.
Specifically, the model generates the frontalized face Îf from If1

and If2, and the frontalized face Îp from Ip1 and Ip2.

Using two random frontal images If1 and If2 to generate a
frontalized image during training is crucial for ensuring the sta-
bility of the training process. Without this component, the train-
ing process often fails to converge. Generating a frontalized image
from the same frontal image allows the model to converge quickly
but results in overfitting. To address this, we included the genera-
tion of a frontalized image using two different frontal face images,
which may differ in lighting conditions or minor variations. This
approach improves the stability of the training process and pre-
vents overfitting during training.

4.1 Loss function

The loss function used in our model consists of three components:
pixel-wise loss, identity-preserving loss, and adversarial loss. Each
of these losses plays a crucial role in ensuring that the generated
frontal images are accurate, realistic, and identity-preserving. Be-
low, we explain each component in detail.

• Pixel-wise Loss: This loss is calculated between the gener-
ated image Îfand the input frontal images If1 and If2.Since
If1 and If2 are already frontal images, the generated image
is directly compared to these input images. The pixel-wise
loss is defined as:

Lpixel = ∥Îf − If1∥1 + ∥Îf − If2∥1

This component of the loss function encourages the model to
generate pixel-wise images similar to the ground truth, im-
proving visual quality and ensuring stable and accurate train-
ing, as also mentioned in FNM.

• Identity Preserving Loss: This loss is a type of perceptual
loss [6] that ensures the identity of the generated frontalized
image matches the identity of the input image. In face frontal-
ization, it is crucial that the identity in the generated frontal
image remains consistent with the input profile image. This
loss works by minimizing the distance between the feature
space representations of the input profile images Ip1, Ip2
and the generated frontalized image Îp, both extracted using
a pre-trained face recognition model. The identity-preserving
loss can be formulated as:

Lip = ∥ϕ(Îp)− ϕ(Ip1)∥22 + ∥ϕ(Îp)− ϕ(Ip2)∥22

where ϕ represents the feature extraction function of the pre-
trained face recognition model.

• Adversarial Loss: This loss is based on the standard GAN
loss [7], which is used to ensure that the generated frontalized
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niques: max pooling and average pooling. These two pooling meth-
ods are widely used in deep learning for dimensionality reduction
and feature aggregation, allowing us to merge the extracted fea-
tures from multiple input images efficiently.

• Max Pooling: For each corresponding element in the feature
vectors, we select the maximum value across all input fea-
tures. This method captures the most dominant feature in each
dimension, ensuring that the strongest signals from each input
image are retained in the final feature representation.

• Average Pooling: We compute the average value for each cor-
responding element in the feature vectors. This method helps
in smoothing out the feature differences between images and
results in a more generalized representation that incorporates
information from all inputs equally.

In Figure 2, we show how these two fusion techniques combine
two feature vectors into one. However, one of the reasons we se-
lected these pooling methods is their flexibility in handling N input
features. Whether the input consists of two, three, or more side-face
images, the fusion module can seamlessly integrate any number of
feature vectors, making the system highly adaptable to various in-
put conditions.

This flexibility ensures that our model can generalize to scenar-
ios where different numbers of side-view images are available, en-
hancing the robustness of the frontalization process.

4 Training Strategy

In this section, we describe the training strategy used for our pro-
posed module. During training, a total of four images are input
into the model. These consist of two random frontal images from
the frontal image set and two random profile images from the pro-
file image set which is a non-frontal face image set, each from a
different subject.

Let If1 and If2 represent the two random frontal images from
the same subject, and Ip1 and Ip2 represent the two random pro-
file images from another same subject. These four images are pro-
cessed to generate two frontalized outputs, as shown in Figure 1.
Specifically, the model generates the frontalized face Îf from If1

and If2, and the frontalized face Îp from Ip1 and Ip2.

Using two random frontal images If1 and If2 to generate a
frontalized image during training is crucial for ensuring the sta-
bility of the training process. Without this component, the train-
ing process often fails to converge. Generating a frontalized image
from the same frontal image allows the model to converge quickly
but results in overfitting. To address this, we included the genera-
tion of a frontalized image using two different frontal face images,
which may differ in lighting conditions or minor variations. This
approach improves the stability of the training process and pre-
vents overfitting during training.

4.1 Loss function

The loss function used in our model consists of three components:
pixel-wise loss, identity-preserving loss, and adversarial loss. Each
of these losses plays a crucial role in ensuring that the generated
frontal images are accurate, realistic, and identity-preserving. Be-
low, we explain each component in detail.

• Pixel-wise Loss: This loss is calculated between the gener-
ated image Îfand the input frontal images If1 and If2.Since
If1 and If2 are already frontal images, the generated image
is directly compared to these input images. The pixel-wise
loss is defined as:

Lpixel = ∥Îf − If1∥1 + ∥Îf − If2∥1

This component of the loss function encourages the model to
generate pixel-wise images similar to the ground truth, im-
proving visual quality and ensuring stable and accurate train-
ing, as also mentioned in FNM.

• Identity Preserving Loss: This loss is a type of perceptual
loss [6] that ensures the identity of the generated frontalized
image matches the identity of the input image. In face frontal-
ization, it is crucial that the identity in the generated frontal
image remains consistent with the input profile image. This
loss works by minimizing the distance between the feature
space representations of the input profile images Ip1, Ip2
and the generated frontalized image Îp, both extracted using
a pre-trained face recognition model. The identity-preserving
loss can be formulated as:

Lip = ∥ϕ(Îp)− ϕ(Ip1)∥22 + ∥ϕ(Îp)− ϕ(Ip2)∥22

where ϕ represents the feature extraction function of the pre-
trained face recognition model.

• Adversarial Loss: This loss is based on the standard GAN
loss [7], which is used to ensure that the generated frontalized

image is indistinguishable from real frontal images. In a GAN
framework, the generator aims to produce images that are re-
alistic enough to fool the discriminator, while the discrimi-
nator tries to distinguish between real and generated images.
The adversarial loss for the generator can be expressed as:

Ladv = EIgt [logDis(x)] + EÎ [1− logDis(x)]

where:

EIgt : Average over real frontal images.

EÎ : Average over generated frontalized images.

Dis(x) : The discriminator function.

We employ the vanilla GAN loss function [7] to assess the
performance of our model. Despite recent advancements in
GANs, such as WGAN [8, 9], which show superior perfor-
mance, using them for our purposes presents no issues.

The overall loss function was the weighted sum of the three afore-
mentioned loss functions. This can be formulated as follows:

L = λpixelLpixel + λipLip + λadvLadv

5 Experimental Result

5.1 Experimental Datasets

We utilized the CMU Multi-PIE face dataset [10] for both our train-
ing and testing sets. The Multi-PIE dataset contains over 750,000
images of 337 subjects, captured across 15 different viewpoints and
19 illumination conditions, with various facial expressions. This
dataset is commonly employed for assessing face synthesis and
recognition in controlled environments. Consistent with previous
face frontalization research [1, 2], we adopted setting 2 to evaluate
our model. Setting 2 involves using neutral expression images from
all four sessions, encompassing 337 identities. We used images of
the first 200 identities across 11 poses for training. For testing, a
frontal view image under standard illumination was chosen as the
gallery image for each of the remaining 137 identities, while the
rest of the images were used as probe images.

5.1.1 Implementation Details

For both training and testing, the face images were aligned us-
ing the MTCNN face detector [11], followed by cropping to a
resolution of 224×224 pixels. During the training phase, we ap-
plied the Adam optimizer with the following hyperparameters:
lr = 10−4, β1 = 0.5, β2 = 0.99, λpixel = 1, λip = 1, λadv = 0.1.

Table 1: Rank-1 recognition rate (%) performance comparison
between the baseline FNM and the proposed Multi-Image FNM
across different numbers of input images (n). The proposed Multi-
Image FNM was trained using two input images.

number of
input images FNM [1]

Multi-Image FNM
(maxpolling)

Multi-Image FNM
(avgpooling)

n=1 87.39 87.39 87.39
n=2 - 94.47 93.91
n=3 - 95.63 95.81
n=4 - 95.82 96.61
n=5 - 95.89 97.15
n=6 - 95.94 97.28
n=7 - 96.01 97.43
n=8 - 95.94 97.63

5.2 Results

Akin to previous studies, we assessed the face frontalization perfor-
mance using the rank-1 recognition rate. This metric is computed
by measuring the cosine distance between the feature vectors ex-
tracted from the generated frontal faces and the gallery images of
the corresponding identities, using a pre-trained face recognition
network.

Our model was trained using two input images, which en-
ables the network to learn how to effectively combine information
from multiple perspectives to generate high-quality frontal images.
Since our method utilizes multiple input images, we compare our
results with the baseline method, FNM, which is limited to using
a single input image (n=1). As illustrated in Table 1, we report
recognition rates for varying numbers of input images, from n=2
to n=8, to evaluate the effectiveness of incorporating additional in-
put images. The input images in our model are randomly selected
from various angles, without restriction, ensuring that the model is
exposed to diverse perspectives. Table 1 represents the results of
testing a single trained model, which was trained using two input
images, with varying numbers of input images (n=2 to n=8). The
baseline FNM model achieves a rank-1 recognition rate of 87.39%
with only one input image, whereas our proposed Multi-Image
FNM shows a clear improvement in performance as the number
of input images increases. For n=2, the recognition rate improves
significantly, reaching 94.47% with max pooling and 93.91% with
average pooling. This trend continues until n=7, where the high-
est recognition rates are observed: 96.01% for max pooling and
97.43% for average pooling. For n=8, max pooling remains at
95.94%, and average pooling slightly improves to 97.63%, indicat-
ing that while additional images contribute to improved frontaliza-
tion, the gains may plateau beyond a certain point. The comparison
between max pooling and average pooling also highlights differ-
ences in performance. While both pooling strategies show strong
results, average pooling tends to perform better as the number
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Table 2: Rank-1 recognition rate (%) performance comparison between the baseline FNM and the proposed Multi-Image FNM across
varying pose angles.

−15◦ + 15◦ −30◦ + 30◦ −45◦ + 45◦ −60◦ + 60◦ −75◦ + 75◦ −90◦ + 90◦

FNM (1-view) 97.47 96.17 94.48 89.02 78.91 68.56
Multi-Image FNM

(maxpooling) 98.23 98.12 97.30 94.53 86.45 76.73

Multi-Image FNM
(avgpooling) 98.12 97.77 96.97 94.03 85.78 75.62

of input images increases, particularly for n=3 and beyond. This
suggests that average pooling may be more effective in capturing
complementary information from multiple input images, leading to
higher recognition accuracy

Additionally, our method benefits from using multiple input im-
ages, allowing us to input face images from opposite directions
(e.g., +90 and -90 degrees), which is not possible when using a
single image. In the case of single-image input, the opposite side
of the face is not visible, limiting the model’s ability to fully recon-
struct the frontal view. As shown in Table 2, by leveraging images
from opposite angles, our multi-image input approach significantly
enhances performance. Table 2 and Figure 3 illustrate the perfor-
mance of the same model, trained using two input images when
tested with two input images. We compare these results against the
baseline FNM to highlight the performance improvements enabled
by our approach.

One key advantage of our method is its ability to handle the un-
seen parts of the face that are missing in single-image frontaliza-
tion. When only one image is used, crucial facial details on the
opposite side are not visible, limiting the model’s ability to recon-
struct a complete frontal view. However, by utilizing multiple side-
view images from different angles, our method is able to capture
and synthesize the missing details, resulting in significantly bet-
ter performance, especially for extreme angles. This advantage is
evident across various pose angles, as reflected in the improved
recognition rates.

In addition to the quantitative results, Figure 3 provides a visual
comparison between the baseline FNM and our proposed Multi-
Image FNM. The figure demonstrates how our method outperforms
the baseline, particularly in cases with extreme angles. The first
two rows display the side-face images (Input1 and Input2) used as
input, and the third row shows the results from the baseline FNM,
which struggles to generate accurate frontal images from a single
input. In contrast, the fourth and fifth rows show the results from
our Multi-Image FNM model with max pooling and average pool-
ing, respectively. Our method consistently generates more realis-
tic and identity-preserving frontal images, especially when using
multiple side-face inputs, which provide crucial information about

the hidden parts of the face. The final row shows the ground truth
frontal images for reference, further highlighting the performance
improvement of our method over the baseline FNM.

Input1

Input2

FNM (1-view)

Multi-Image FNM
(Maxpooling)

Multi-Image FNM
(Avgpooling)

Ground Truth

Figure 3: Visual comparison of face frontalization results between
FNM and our proposed Multi-Image FNM.

5.3 Conclusion

In this paper, we introduced a novel face frontalization approach
that leverages multiple side-face images as input to overcome
the limitations of previous methods such as DR-GAN [3] and
FNM [1]. Our method not only improves flexibility by allowing
training with varying numbers of input images, but it also signif-
icantly enhances performance when handling extreme pose varia-
tions, such as 90-degree side profiles. By incorporating a feature
fusion module and explicitly considering diverse angles, our ap-
proach generates more accurate and identity-preserving frontal im-
ages compared to single-image-based methods.

Through extensive experiments, we demonstrated that our model
consistently outperforms the baseline methods, achieving higher
recognition rates as the number of input images increases. The re-
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Table 2: Rank-1 recognition rate (%) performance comparison between the baseline FNM and the proposed Multi-Image FNM across
varying pose angles.

−15◦ + 15◦ −30◦ + 30◦ −45◦ + 45◦ −60◦ + 60◦ −75◦ + 75◦ −90◦ + 90◦

FNM (1-view) 97.47 96.17 94.48 89.02 78.91 68.56
Multi-Image FNM

(maxpooling) 98.23 98.12 97.30 94.53 86.45 76.73

Multi-Image FNM
(avgpooling) 98.12 97.77 96.97 94.03 85.78 75.62

of input images increases, particularly for n=3 and beyond. This
suggests that average pooling may be more effective in capturing
complementary information from multiple input images, leading to
higher recognition accuracy

Additionally, our method benefits from using multiple input im-
ages, allowing us to input face images from opposite directions
(e.g., +90 and -90 degrees), which is not possible when using a
single image. In the case of single-image input, the opposite side
of the face is not visible, limiting the model’s ability to fully recon-
struct the frontal view. As shown in Table 2, by leveraging images
from opposite angles, our multi-image input approach significantly
enhances performance. Table 2 and Figure 3 illustrate the perfor-
mance of the same model, trained using two input images when
tested with two input images. We compare these results against the
baseline FNM to highlight the performance improvements enabled
by our approach.

One key advantage of our method is its ability to handle the un-
seen parts of the face that are missing in single-image frontaliza-
tion. When only one image is used, crucial facial details on the
opposite side are not visible, limiting the model’s ability to recon-
struct a complete frontal view. However, by utilizing multiple side-
view images from different angles, our method is able to capture
and synthesize the missing details, resulting in significantly bet-
ter performance, especially for extreme angles. This advantage is
evident across various pose angles, as reflected in the improved
recognition rates.

In addition to the quantitative results, Figure 3 provides a visual
comparison between the baseline FNM and our proposed Multi-
Image FNM. The figure demonstrates how our method outperforms
the baseline, particularly in cases with extreme angles. The first
two rows display the side-face images (Input1 and Input2) used as
input, and the third row shows the results from the baseline FNM,
which struggles to generate accurate frontal images from a single
input. In contrast, the fourth and fifth rows show the results from
our Multi-Image FNM model with max pooling and average pool-
ing, respectively. Our method consistently generates more realis-
tic and identity-preserving frontal images, especially when using
multiple side-face inputs, which provide crucial information about

the hidden parts of the face. The final row shows the ground truth
frontal images for reference, further highlighting the performance
improvement of our method over the baseline FNM.
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Figure 3: Visual comparison of face frontalization results between
FNM and our proposed Multi-Image FNM.

5.3 Conclusion

In this paper, we introduced a novel face frontalization approach
that leverages multiple side-face images as input to overcome
the limitations of previous methods such as DR-GAN [3] and
FNM [1]. Our method not only improves flexibility by allowing
training with varying numbers of input images, but it also signif-
icantly enhances performance when handling extreme pose varia-
tions, such as 90-degree side profiles. By incorporating a feature
fusion module and explicitly considering diverse angles, our ap-
proach generates more accurate and identity-preserving frontal im-
ages compared to single-image-based methods.

Through extensive experiments, we demonstrated that our model
consistently outperforms the baseline methods, achieving higher
recognition rates as the number of input images increases. The re-

sults also highlight the effectiveness of both max pooling and av-
erage pooling for feature fusion, with average pooling slightly out-
performing in cases where more input images are available. Fur-
thermore, our method shows strong robustness when reconstruct-
ing frontal faces from input images taken at extreme angles, prov-
ing its practical applicability in challenging scenarios.

Looking forward, our method holds potential for further im-
provements, including the incorporation of more advanced loss
functions and exploring additional datasets with more diverse con-
ditions. We believe that the flexibility and performance of our ap-
proach will contribute to the advancement of face frontalization
techniques and their applications in real-world face recognition
systems.
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